亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

目標檢測的任務是從圖像中精確且高效地識別、定位出大量預定義類別的物體實例。隨著深度學習的廣泛應用,目標檢測的精確度和效率都得到了較大提升,但基于深度學習的目標檢測仍面臨改進與優化主流目標檢測算法的性能、提高小目標物體檢測精度、實現多類別物體檢測、輕量化檢測模型等關鍵技術的挑戰。針對上述挑戰,本文在廣泛文獻調研的基礎上,從雙階段、單階段目標檢測算法的改進與結合的角度分析了改進與優化主流目標檢測算法的方法,從骨干網絡、增加視覺感受野、特征融合、級聯卷積神經網絡和模型的訓練方式的角度分析了提升小目標檢測精度的方法,從訓練方式和網絡結構的角度分析了用于多類別物體檢測的方法,從網絡結構的角度分析了用于輕量化檢測模型的方法。此外,對目標檢測的通用數據集進行了詳細介紹,從4個方面對該領域代表性算法的性能表現進行了對比分析,對目標檢測中待解決的問題與未來研究方向做出預測和展望。目標檢測研究是計算機視覺和模式識別中備受青睞的熱點,仍然有更多高精度和高效的算法相繼提出,未來將朝著更多的研究方向發展。

付費5元查看完整內容

相關內容

目標檢測作為機器視覺中重要任務之一,是人工智能體系中一個具有重要研究價值的技術分支。對于卷積神經網絡框架、anchor-based模型和anchor-free模型三個主流的目標檢測模型進行梳理。首先,綜述了主流卷積神經網絡框架的網絡結構、優缺點以及相關的改進方法;其次從one-stage和two-stage兩個分支對anchor-based類模型進行深入分析,總結了不同目標檢測方法的研究進展;從早期探索、關鍵點和密集預測三部分分析anchor-free類模型。最后對該領域的未來發展趨勢進行了思考與展望。

付費5元查看完整內容

簡介: 目標檢測作為機器視覺中重要任務之一,是人工智能體系中一個具有重要研究價值的技術分支. 對于卷積神經網絡框架、 anchor-based模型和anchor-free模型三個主流的目標檢測模型進行梳理. 首先,綜述了主流卷積神 經網絡框架的網絡結構、優缺點以及相關的改進方法;其次從one-stage和two-stage兩個分支對anchor-based類模型進行深入分析, 總結了不同目標檢測方法的研究進展; 從早期探索、關鍵點和密集預測三部分分析anchor-free類模型. 最后對該領域的未來發展趨勢進行了思考與展望.

付費5元查看完整內容

摘要: 目標檢測算法應用廣泛,一直是計算機視覺領域備受關注的研究熱點。近年來,隨著深度學習的發展,3D圖像的目標檢測研究取得了巨大的突破。與2D目標檢測相比,3D目標檢測結合了深度信息,能夠提供目標的位置、方向和大小等空間場景信息,在自動駕駛和機器人領域發展迅速。文中首先對基于深度學習的2D目標檢測算法進行概述;其次根據圖像、激光雷達、多傳感器等不同數據采集方式,分析目前具有代表性和開創性的3D目標檢測算法;結合自動駕駛的應用場景,對比分析不同 3D 目標檢測算法的性能、優勢和局限性;最后總結了3D目標檢測的應用意義以及待解決的問題,并對 3D 目標檢測的發展方向和新的挑戰進行了討論和展望。

付費5元查看完整內容
北京阿比特科技有限公司