亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

理解并實施panda的大數據分析解決方案,強調性能。本書通過探索其底層實現和數據結構,增強了您使用Python數據分析庫pandas的直覺。

《Pandas 編程思想》介紹了大數據的主題,并通過觀看pandas幫助解決的激動人心和有影響力的項目來展示概念。從那里,您將學習按大小和類型評估您自己的項目,以確定pandas是否適合您的需要。作者Hannah Stepanek解釋了如何在pandas中有效地加載和規范化數據,并回顧了一些最常用的加載器和它們的幾個最強大的選項。然后,您將了解如何有效地訪問和轉換數據,應該避免哪些方法,以及何時使用更高級的性能技術。您還將學習基本的數據訪問、學習panda和直觀的字典語法。此外,還討論了如何選擇正確的DataFrame格式、使用多層次的DataFrame以及將來如何改進panda。

在本書結束時,您將對pandas庫的底層工作原理有一個牢固的理解。準備好用正確的方法在你自己的項目中做出自信的決定。

你將學到什么

  • 理解pandas的底層數據結構,以及為什么在某些情況下它會這樣執行
  • 了解如何使用pandas正確地提取、轉換和加載數據,重點關注性能
  • 選擇正確的數據格式,使數據分析簡單有效。
  • 使用其他Python庫提高pandas操作的性能

這本書是給誰的

  • 具有基本Python編程技能的軟件工程師熱衷于在大數據分析項目中使用pandas。Python軟件開發人員對大數據感興趣。
付費5元查看完整內容

相關內容

通過這個緊湊的實用指南,開始使用Python進行數據分析。這本書包括三個練習和一個用正確的格式從Python代碼中獲取數據的案例研究。使用Python學習數據分析還可以幫助您使用分析發現數據中的意義,并展示如何可視化數據。

每一節課都盡可能是獨立的,允許您根據需要插入和退出示例。如果您已經在使用Python進行數據分析,那么您會發現您希望知道如何使用Python來完成許多事情。然后,您可以將這些技術直接應用到您自己的項目中。

如果您不使用Python進行數據分析,那么本書從一開始就帶您了解基礎知識,為您在該主題中打下堅實的基礎。當你閱讀完這本書的時候,你會對如何使用Python進行數據分析有更好的理解。

你將學到什么

  • 從Python代碼中獲取數據
  • 準備數據及其格式
  • 找出數據的意義
  • 使用iPython可視化數據

這本書是給誰的

想學習使用Python進行數據分析的同學。建議您具有Python方面的經驗,但不是必需的,因為您需要具有數據分析或數據科學方面的經驗。

付費5元查看完整內容

機器學習已經成為許多商業應用和研究項目中不可或缺的一部分,但這一領域并不僅限于擁有廣泛研究團隊的大公司。如果您使用Python,即使是初學者,這本書也會教你構建自己的機器學習解決方案的實用方法。今天,有了所有可用的數據,機器學習應用程序只受限于你的想象力。

您將學習使用Python和scikit-learn庫創建成功的機器學習應用程序所需的步驟。兩位作者安德烈亞斯?穆勒(Andreas Muller)和薩拉?圭多(Sarah Guido)關注的是使用機器學習算法的實踐層面,而不是背后的數學。熟悉NumPy和matplotlib庫將有助于您從本書獲得更多信息。

通過這本書,你會學到 :

  • 機器學習的基本概念和應用
  • 廣泛應用的機器學習算法的優缺點
  • 如何表示機器學習處理過的數據,包括關注哪些數據方面
  • 先進的模型評估和參數調整方法
  • 用于鏈接模型和封裝工作流的管道概念
  • 處理文本數據的方法,包括特定于文本的處理技術
  • 提高機器學習和數據科學技能的建議
付費5元查看完整內容

Python是一種多范式編程語言,已經成為數據科學家進行數據分析、可視化和機器學習的首選語言。有沒有想過如何成為有效處理數據分析問題的專家,解決這些問題,并從數據中提取所有可用信息?好了,別再找了,這就是你要的書!

通過這個全面的指南,您將探索數據,并以一種有意義的方式展示統計分析的結果和結論。您將能夠快速準確地執行實際操作的排序、縮減和后續分析,并充分理解數據分析方法如何支持業務決策。

您將首先了解Python中可用的數據分析工具,然后探索用于識別數據模式的統計模型。漸漸地,您將使用Python、panda和SciPy回顧統計推斷。在此之后,我們將集中于使用計算工具執行回歸,您將了解如何用算法的方式識別數據中的集群。最后,我們將深入探討使用貝葉斯方法量化因果關系的高級技術,您將發現如何使用Python的工具進行監督機器學習。

你會學到什么

  • 將各種數據讀入、排序并映射到Python和panda中
  • 識別模式,以便理解和研究數據
  • 使用統計模型來發現數據中的模式
  • 回顧使用Python、panda和SciPy的經典統計推斷
  • 使用聚類檢測數據中的相似性和差異性
  • 清理數據,使其有用
  • 在Jupyter筆記本生產出版準備工作數據納入
付費5元查看完整內容

Python程序員將使用這些有用的單行程序來提高他們的計算機科學技能。

Python單行程序將教會您如何閱讀和編寫“單行程序”:將有用功能的簡明語句封裝到一行代碼中。您將學習如何系統地解包和理解任何一行Python代碼,并像專家一樣編寫雄辯、強大的壓縮Python。

本書共分五章,內容包括技巧和技巧、正則表達式、機器學習、核心數據科學主題和有用的算法。對一行程序的詳細解釋將介紹關鍵的計算機科學概念,并提高您的編碼和分析技能。您將了解高級Python特性,如列表理解、切片、lambda函數、正則表達式、映射和縮減函數以及切片分配。您還將學習如何:

?利用數據結構來解決現實世界的問題,比如使用布爾索引來查找污染水平高于平均水平的城市

?使用NumPy基礎,如數組、形狀、軸、類型、廣播、高級索引、切片、排序、搜索、聚合和統計

?計算多維數據數組的基本統計量和無監督學習的K-Means算法

?使用分組和命名組、負查找頭、轉義字符、空白、字符集(和負字符集)和貪婪/非貪婪操作符創建更高級的正則表達式

?了解廣泛的計算機科學主題,包括字謎、回文、超集、排列、階乘、質數、斐波納契數、混淆、搜索和算法排序

在本書的最后,您將了解如何以最精煉的方式編寫Python,并僅用一行代碼就創建簡潔、漂亮的“Python藝術”片段。

付費5元查看完整內容

Python算法,第二版解釋了Python方法的算法分析和設計。本書由《初級Python》的作者Magnus Lie Hetland撰寫,主要關注經典算法,但也對基本的算法解決問題技術有了深入的理解。

這本書涉及一些最重要和最具挑戰性的領域的編程和計算機科學在一個高度可讀的方式。它涵蓋了算法理論和編程實踐,演示了理論是如何反映在真實的Python程序中的。介紹了Python語言中內置的著名算法和數據結構,并向用戶展示了如何實現和評估其他算法和數據結構

付費5元查看完整內容

本書通過提供真實的案例研究和示例,為使用Python庫進行機器學習提供了堅實的基礎。它涵蓋了諸如機器學習基礎、Python入門、描述性分析和預測分析等主題。包括高級機器學習概念,如決策樹學習、隨機森林、增強、推薦系統和文本分析。這本書在理論理解和實際應用之間采取了一種平衡的方法。所有的主題都包括真實世界的例子,并提供如何探索、構建、評估和優化機器學習模型的逐步方法。

付費5元查看完整內容

這本書在對算法工作原理的高層次理解和對優化模型的具體細節的了解之間找到一個平衡點。這本書將給你的信心和技能時,開發所有主要的機器學習模型。在這本Pro機器學習算法中,您將首先在Excel中開發算法,以便在用Python/R實現模型之前,實際了解可以在模型中調優的所有細節。

你將涵蓋所有主要的算法:監督和非監督學習,其中包括線性/邏輯回歸;k - means聚類;主成分分析;推薦系統;決策樹;隨機森林;“GBM”;和神經網絡。您還將通過CNNs、RNNs和word2vec等文本挖掘工具了解最新的深度學習。你不僅要學習算法,還要學習特征工程的概念來最大化模型的性能。您將看到該理論與案例研究,如情緒分類,欺詐檢測,推薦系統,和圖像識別,以便您得到最佳的理論和實踐為工業中使用的絕大多數機器學習算法。在學習算法的同時,您還將接觸到在所有主要云服務提供商上運行的機器學習模型。

你會學到什么?

  • 深入了解所有主要的機器學習和深度學習算法
  • 充分理解在構建模型時要避免的陷阱
  • 在云中實現機器學習算法
  • 通過對每種算法的案例研究,采用動手實踐的方法
  • 學習集成學習的技巧,建立更精確的模型
  • 了解R/Python編程的基礎知識和Keras深度學習框架

這本書是給誰看的

希望轉換到數據科學角色的業務分析師/ IT專業人員。想要鞏固機器學習知識的數據科學家。

付費5元查看完整內容

您的邏輯,線性指南的基本數據科學編程。

數據科學正在以一種良好的方式迅猛發展,預計到2020年,地球上每秒鐘為每個人創造1.7兆字節的新信息,到2026年將創造1150萬個工作機會。很明顯,知情是有好處的。這個友好的指南在數據科學的基礎上繪制了一條路徑,然后深入到實際工作中: 線性回歸、邏輯回歸、機器學習、神經網絡、推薦引擎,以及模型的交叉驗證。

Data Science Programming All-In-One For Dummies是關鍵數據科學、機器學習和深度學習編程語言Python和r的匯編。它幫助你決定哪種編程語言最適合特定的數據科學需求。它還為您提供了構建自己的項目以實時解決問題的指導方針。

腳踏實地:新數據專業人士的理想起點

未來的情況:了解數據正在轉換的特定領域

有意義:找出如何講述你的數據故事

看清楚:學習可視化的藝術

無論你是剛開始學習還是已經處于職業生涯的中期,現在就拿起你的那份,給你的生活和其他人的生活增添更多的意義吧!

付費5元查看完整內容

簡介: Google一直是引入突破性技術和產品的先驅。在效率和規模方面,TensorFlow也不例外,因此,編寫本書只是向讀者介紹TensorFlow核心團隊所做的這些重要更改。本書著重于機器學習方面的TensorFlow的不同應用,并更深入地探討了方法的最新變化。對于那些想要用TensorFlow進行機器學習的人來說,這本書是一個很好的參考點。本書分為三個部分。第一篇:使用TensorFlow 2.0進行數據處理。第二部分:使用TensorFlow 2.0構建機器學習和深度學習模型。它還包括使用TensorFlow 2.0的神經語言編程(NLP)。第三部分介紹了如何在環境中保存和部署TensorFlow 2.0模型。這本書對數據分析人員和數據工程師也很有用,因為它涵蓋了使用TensorFlow 2.0處理大數據的步驟。想要過渡到數據科學和機器學習領域的讀者也會發現,本書提供了實用的入門指南,以后可能會出現更復雜的方面。書中提供的案例研究和示例使您很容易理解和理解相關的基本概念。本書的優勢在于其簡單性以及將機器學習應用于有意義的數據集。

目錄:

  • Chapter 1:tenforflow 2.0介紹
    • tensor
    • TensorFlow 1.0與 Tensorflow 2.0的對比
    • Tensorflow 2.0安裝于基礎操作
  • Chapter 2:tenforflow 與監督學習
    • 監督機器學習是什么
    • TF2.0實現線性回歸
    • 使用TF和Keras的線性回歸應用
    • TF2.0實現邏輯回歸
    • TF2.0實現boosted樹
  • Chapter 3:tenforflow與深度神經網絡
    • 什么是神經網絡
    • 前向傳播與反向傳播
    • TF2.0構建神經網絡
    • 深度神經網絡
    • TF2.0構建深度神經網絡
    • 使用Keras模型估量
    • 總結
  • Chapter 4:圖片與Tensorflow
    • 圖片處理
    • 卷積神經網絡
    • TF2.0與卷積神經網絡
    • 遷移學習
    • TF2.0與變分自編碼器
    • 總結
  • Chapter 5:TF2.0與自然語言處理(NLP)
    • NLP概述
    • 文本處理
    • 文本分類與TF
    • TF projector
  • Chapter 6:TF模型
    • TF部署
    • 模型部署的Python
    • 基于TF的Keras模型
付費5元查看完整內容
北京阿比特科技有限公司