社交網絡和分子圖等結構化的圖形數據在現實世界中隨處可見。設計先進的圖結構數據表示學習算法,促進下游任務的完成,具有重要的研究意義。圖神經網絡(GNNs)將深度神經網絡模型推廣到圖結構數據,為從節點級或圖級有效學習圖結構數據表示開辟了一條新途徑。由于其強大的表示學習能力,GNN在從推薦、自然語言處理到醫療保健等各種應用中獲得了實際意義。近年來,它已成為一個熱門的研究課題,越來越受到機器學習和數據挖掘界的關注。本教程涵蓋了相關和有趣的主題,包括使用GNNs在圖結構數據上的表示學習、GNNs的魯棒性、GNNs的可擴展性和基于GNNs的應用程序。
目錄內容:
社交網絡和分子圖等結構化的圖形數據在現實世界中隨處可見。設計先進的圖結構數據表示學習算法,促進下游任務的完成,具有重要的研究意義。圖神經網絡(GNNs)將深度神經網絡模型推廣到圖結構數據,為從節點級或圖級有效學習圖結構數據表示開辟了一條新途徑。由于其強大的表示學習能力,GNN在從推薦、自然語言處理到醫療保健等各種應用中獲得了實際意義。近年來,它已成為一個熱門的研究課題,越來越受到機器學習和數據挖掘界的關注。本教程涵蓋了相關和有趣的主題,包括使用GNNs在圖結構數據上的表示學習、GNNs的魯棒性、GNNs的可擴展性和基于GNNs的應用程序。
目錄內容: 引言 Introduction 基礎 Foundations 模型 Models 應用 Applications
如今,網絡越來越大,越來越復雜,應用越來越廣泛。眾所周知,網絡數據是復雜和具有挑戰性的。要有效地處理圖數據,第一個關鍵的挑戰是網絡數據表示,即如何正確地表示網絡,使模式發現、分析和預測等高級分析任務在時間和空間上都能有效地進行。在這次演講中,我將介紹網絡嵌入和GCN的最新發展趨勢和最新進展,包括解糾纏GCN、抗攻擊GCN以及用于網絡嵌入的自動機器學習。
圖神經網絡(GNNs)是針對圖信號的信息處理體系結構。它們已經被開發出來,并在本課程中作為卷積神經網絡(CNNs)的推廣來介紹,它被用來在時間和空間上處理信號。這句話聽起來可能有些奇怪,這取決于你對神經網絡(NNs)和深度學習的了解程度。CNN不就是NN的特例嗎?GNN不也是這樣嗎?從嚴格意義上說,它們是存在的,但我們這門課的重點是涉及高維信號的大規模問題。在這些設置中,神經網絡無法伸縮。CNN為信號在時間和空間上提供可擴展的學習。GNNS支持圖信號的可擴展學習。
在本課程中,我們將在學習單特征和多特征GNN之前,介紹圖卷積濾波器和圖濾波器組。我們還將介紹相關的架構,如經常性的GNN。特別的重點將放在研究GNN的排列的等方差和圖變形的穩定性。這些特性提供了一個解釋的措施,可以觀察到的良好性能的GNNs經驗。我們還將在大量節點的極限范圍內研究GNN,以解釋不同節點數量的網絡間GNN的可遷移性。
Lecture 1: Machine Learning on Graphs 圖機器學習
圖神經網絡(GNNs)是一種具有廣泛適用性和非常有趣的特性的工具。可以用它們做很多事情,也有很多東西需要學習。在第一節課中,我們將回顧本課程的目標并解釋為什么我們應該關注GNN。我們還提供了未來的預覽。我們討論了在可擴展學習中利用結構的重要性,以及卷積是如何在歐幾里得空間中實現這一點的。我們進一步解釋如何將卷積推廣到圖,以及隨后將卷積神經網絡推廣到圖(卷積)神經網絡。
1.1 – Graph Neural Networks 圖神經網絡
在這門課程中,我希望我們能夠共同完成兩個目標。您將學習如何在實際應用程序中使用GNNs。也就是說,您將開發使用圖神經網絡在圖上表述機器學習問題的能力。你將學會訓練他們。你將學會評估它們。但你也會學到,你不能盲目地使用它們。你將學習到解釋他們良好的實證表現的基本原理。這些知識將允許您確定GNN適用或不適用的情況。
1.2 Machine Learning on Graphs: The Why 圖機器學習
我們關心GNN是因為它們使機器能夠在圖上學習。但我們為什么要關注圖機器學習呢?我們在這里詳述圖機器學習的原因。它為什么有趣?我們為什么要關心這個?我們關心的原因很簡單:因為圖表在信息處理中無處不在。
1.3 – Machine Learning on Graphs: The How
在討論了原因之后,我們來處理如何做。我們如何在圖上進行機器學習?這個問題的答案很簡單:我們應該使用神經網絡。我們應該這樣做,因為我們有豐富的經驗和理論證據證明神經網絡的價值。理解這些證據是本課程的目標之一。但在我們準備這么做之前,有一個潛在的阻礙因素:神經網絡必須利用結構來實現可擴展。
從社交網絡到分子,許多真實數據都是以非網格對象的形式出現的,比如圖。最近,從網格數據(例如圖像)到圖深度學習受到了機器學習和數據挖掘領域前所未有的關注,這導致了一個新的跨領域研究——深度圖學習(DGL)。DGL的目標不是繁瑣的特征工程,而是以端到端方式學習圖的信息性表示。它在節點/圖分類、鏈接預測等任務中都取得了顯著的成功。
在本教程中,我們的目的是提供一個深入的圖學習的全面介紹。首先介紹了深度圖學習的理論基礎,重點描述了各種圖神經網絡模型(GNNs)。然后介紹DGL近年來的主要成就。具體來說,我們討論了四個主題:1)深度GNN的訓練; 2) GNNs的魯棒性; 3) GNN的可擴展性; 4) GNN的自監督和無監督學習。最后,我們將介紹DGL在各個領域的應用,包括但不限于藥物發現、計算機視覺、醫學圖像分析、社會網絡分析、自然語言處理和推薦。
//ai.tencent.com/ailab/ml/KDD-Deep-Graph-Learning.html
目錄: 01:00 pm – 01:30 pm: Brief History of Graph Neural Networks 圖神經網絡簡介 01:30 pm – 02:00 pm: Expressivity of GNNs GNNs表達性 02:00 pm – 02:45 pm: Training Deep GNNs 深度GNNs訓練 02:45 pm – 03:10 pm: Break 03:15 pm – 03:45 pm: Scalability of GNNs GNNs可擴展性 03:45 pm – 04:15 pm: Self/Un-Supervised Learning of GNNs GNNs自(無)監督學習 04:15 pm – 04:35 pm: GNN in Social Networks 社交網絡GNN 04:35 pm – 04:55 pm: GNN in Medical Imaging & Future Directions GNNs圖像處理與未來方向 04:55 pm – 05:00 pm: Q&A
從社交網絡到分子,許多真實數據都是以非網格對象的形式出現的,比如圖。最近,從網格數據(例如圖像)到圖深度學習受到了機器學習和數據挖掘領域前所未有的關注,這導致了一個新的跨領域研究——深度圖學習(DGL)。DGL的目標不是繁瑣的特征工程,而是以端到端方式學習圖的信息性表示。它在節點/圖分類、鏈接預測等任務中都取得了顯著的成功。
在本教程中,我們的目的是提供一個深入的圖學習的全面介紹。首先介紹了深度圖學習的理論基礎,重點描述了各種圖神經網絡模型(GNNs)。然后介紹DGL近年來的主要成就。具體來說,我們討論了四個主題:1)深度GNN的訓練; 2) GNNs的魯棒性; 3) GNN的可擴展性; 4) GNN的自監督和無監督學習。最后,我們將介紹DGL在各個領域的應用,包括但不限于藥物發現、計算機視覺、醫學圖像分析、社會網絡分析、自然語言處理和推薦。
//ai.tencent.com/ailab/ml/KDD-Deep-Graph-Learning.html
目錄:
近年來, 隨著海量數據的涌現, 可以表示對象之間復雜關系的圖結構數據越來越受到重視并給已有的算法帶來了極大的挑戰. 圖神經網絡作為可以揭示深層拓撲信息的模型, 已開始廣泛應用于諸多領域,如通信、生命科學和經濟金融等. 本文對近幾年來提出的圖神經網絡模型和應用進行綜述, 主要分為以下幾類:基于空間方法的圖神經網絡模型、基于譜方法的圖神經網絡模型和基于生成方法的圖神經網絡模型等,并提出可供未來進一步研究的問題.
//engine.scichina.com/publisher/scp/journal/SSM/50/3/10.1360/N012019-00133?slug=fulltext
圖是對對象及其相互關系的一種簡潔抽象的直觀數學表達. 具有相互關系的數據—圖結構數據在眾多領域普遍存在, 并得到廣泛應用. 隨著大量數據的涌現, 傳統的圖算法在解決一些深層次的重要問題, 如節點分類和鏈路預測等方面有很大的局限性. 圖神經網絡模型考慮了輸入數據的規模、異質性和深層拓撲信息等, 在挖掘深層次有效拓撲信息、 提取數據的關鍵復雜特征和 實現對海量數據的快速處理等方面, 例如, 預測化學分子的特性 [1]、文本的關系提取 [2,3]、圖形圖像的結構推理 [4,5]、社交網絡的鏈路預測和節點聚類 [6]、缺失信息的網絡補全 [7]和藥物的相互作用預測 [8], 顯示了令人信服的可靠性能.
圖神經網絡的概念最早于 2005 年由 Gori 等 [9]提出, 他借鑒神經網絡領域的研究成果, 設計了一種用于處理圖結構數據的模型. 2009 年, Scarselli 等 [10]對此模型進行了詳細闡述. 此后, 陸續有關于圖神經網絡的新模型及應用研究被提出. 近年來, 隨著對圖結構數據研究興趣的不斷增加, 圖神經網絡研究論文數量呈現出快速上漲的趨勢, 圖神經網絡的研究方向和應用領域都得到了很大的拓展.
目前已有一些文獻對圖神經網絡進行了綜述. 文獻 [11]對圖結構數據和流形數據領域的深度學習方法進行了綜述, 側重于將所述各種方法置于一個稱為幾何深度學習的統一框架之內; 文獻[12]將圖神經網絡方法分為三類: 半監督學習、無監督學習和最新進展, 并根據發展歷史對各種方法進行介紹、分析和對比; 文獻[13]介紹了圖神經網絡原始模型、變體和一般框架, 并將圖神經網絡的應用劃分為結構場景、非結構場景和其他場景; 文獻[14]提出了一種新的圖神經網絡分類方法, 重點介紹了圖卷積網絡, 并總結了圖神經網絡方法在不同學習任務中的開源代碼和基準.
本文將對圖神經網絡模型的理論及應用進行綜述, 并討論未來的方向和挑戰性問題. 與其他綜述文獻的不同之處在于, 我們給出新的分類標準, 并且介紹圖神經網絡豐富的應用成果. 本文具體結構如下: 首先介紹三類主要的圖神經網絡模型, 分別是基于空間方法的圖神經網絡、基于譜方法的圖神經網絡和基于生成方法的圖神經網絡等; 然后介紹模型在節點分類、鏈路預測和圖生成等方面的應用; 最后提出未來的研究方向.
來自密歇根州立大學的YaoMa, Wei Jin, andJiliang Tang和IBM研究Lingfei Wu與 Tengfei Ma在AAAI2020做了關于圖神經網絡的Tutorial報告,總共305頁ppt,涵蓋使用GNNs對圖結構數據的表示學習、GNNs的健壯性、GNNs的可伸縮性以及基于GNNs的應用,非常值得學習。
摘要
圖結構數據如社交網絡和分子圖在現實世界中無處不在。設計先進的圖數據表示學習算法以方便后續任務的實現,具有重要的研究意義。圖神經網絡(GNNs)將深度神經網絡模型推廣到圖結構數據,為從節點層或圖層有效學習圖結構數據的表示開辟了新的途徑。由于其強大的表示學習能力,GNNs在從推薦、自然語言處理到醫療保健的各種應用中都具有實際意義。它已經成為一個熱門的研究課題,近年來越來越受到機器學習和數據挖掘界的關注。這篇關于GNNs的教程對于AAAI 2020來說是非常及時的,涵蓋了相關的和有趣的主題,包括使用GNNs對圖結構數據的表示學習、GNNs的健壯性、GNNs的可伸縮性以及基于GNNs的應用。
目錄:
百度網盤直接下載: 鏈接: //pan.baidu.com/s/1pQC45GLGOtu6T7T-G2Fn4w 提取碼: xrkz
講者介紹
Yao Ma是密歇根州立大學計算機科學與工程專業的博士生。他還在數據科學與工程實驗室(DSE實驗室)擔任研究助理,該實驗室由Tang Jiliang博士領導。他的研究興趣包括網絡嵌入和圖神經網絡在圖結構數據上的表示學習。曾在WSDM、ASONAM、ICDM、SDM、WWW、KDD、IJCAI等頂級會議上發表創新工作。在加入密歇根州立大學之前,他在Eindhoven理工大學獲得碩士學位,在浙江大學獲得學士學位。
Wei Jin是密歇根州立大學計算機科學與工程專業的一年級博士生,導師是Tang Jiliang博士。他的興趣在于圖表示學習。現從事圖神經網絡的理論基礎、模型魯棒性和應用研究。
Jiliang Tang 自2016年秋季以來一直是密歇根州立大學計算機科學與工程系的助理教授。在此之前,他是雅虎研究院的一名研究科學家,2015年在亞利桑那州立大學獲得博士學位。他的研究興趣包括社會計算、數據挖掘和機器學習,以及它們在教育中的應用。他是2019年NSF Career獎、2015年KDD最佳論文亞軍和6個最佳論文獎(或亞軍)的獲得者,包括WSDM2018和KDD2016。他擔任會議組織者(如KDD、WSDM和SDM)和期刊編輯(如TKDD)。他在高排名的期刊和頂級會議上發表多項研究成果,獲得了成千上萬的引用和廣泛的媒體報道。
Lingfei Wu是IBM AI foundation Labs的研究人員,IBM T. J. Watson研究中心的推理小組。
Tengfei Ma現任美國紐約IBM沃森研究中心研究員。