亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

無人機已成為現代戰爭中不可或缺的一部分,其向更大自主性的演進是不可避免的。本研究探討了軍用無人機向智能化、最小程度依賴人類方向發展的軌跡,并詳細介紹了必要的技術進步。我們模擬了無人機偵察行動,以確定和分析新出現的挑戰。本研究深入探討了對提高無人機智能至關重要的各種技術,重點是基于物體檢測的強化學習,并提供了實際實施案例來說明這些進步。我們的研究結果證實了增強軍用無人機智能的巨大潛力,為更自主、更有效的作戰解決方案鋪平了道路。

圖 3 智能無人機偵察場景和應用技術。

在最近的沖突中,如俄羅斯入侵烏克蘭和亞美尼亞-阿塞拜疆戰爭,無人機被認為是不可或缺的力量。目前,大多數可用于作戰的無人機都是遙控的。雖然無人機在一定程度上實現了自動化,但由于技術和道德問題,仍需要操作人員。從戰術角度看,無人機的最大優勢是 "低成本 "和 "大規模部署"。然而,這兩個優勢只有在無人機無需操作人員即可控制時,也就是無人機智能化時才能發揮作用。

自主無人機本身并不是一個新概念,因為人們已經進行了廣泛的研究。例如,我們生活在一個無人機用于送貨和搜救任務的時代 [1]、[2]、[3]。然而,民用智能無人機技術能否直接用于軍事目的呢?我們的答案是'不能',因為軍用無人機的操作在以下情況下與民用無人機有明顯區別。首先,軍用環境比民用環境更加復雜。想想特斯拉在未鋪設路面的道路上自動駕駛時,駕駛員必須干預的頻率有多高。軍事行動并不發生在 "鋪設良好的道路上"。此外,軍事行動涉及在任意地點分配任務。其次,伴隨軍事行動而來的是敵人無數次的反擊。這些反作用包括主動和被動拒絕,主動拒絕包括試圖攔截,被動拒絕包括隱藏和欺騙。這些敵方活動增加了問題的復雜性。第三,由于軍事的特殊性和安全性,缺乏與軍事行動相關的數據。例如,缺乏坦克和運輸機發射器(TEL)的鳥瞰數據,而這些都是物體探測的常用目標。第四,軍用智能無人機執行任務時需要考慮安全和道德問題。智能無人機在執行任務時如果缺乏穩定性,就會產生不可預測的行為,導致人員濫傷和任務失敗。從倫理角度考慮,即使無人機的整體操作實現了智能化,也需要有最終攻擊決策由人類做出的概念。換句話說,關鍵的考慮因素不應該是無人機是否能自主做出攻擊決定,而是無人機如何提供信息,協助人類做出攻擊的最終決定。這些倫理問題與人類的責任和機器的作用有關。

鑒于這些軍事方面的考慮,對自主軍用無人機和民用無人機的研究應以不同的理念推進。有關軍用智能無人機的研究正在積極進行中,但與民用研究不同的是,大部分研究都沒有進入公共領域。因此,本研究有以下目標。

  • 首先,考慮到軍事行動的特殊性,本研究探討了智能軍用無人機的概念。

  • 其次,我們對該領域出現的各種問題進行案例研究,從工程師的角度看待這些問題,并討論從案例研究中得出的直覺。

圖 1. 智能無人機在民用領域的工程研究

智能偵察無人機案例研究

軍用無人機根據其使用目的分為偵察、攻擊、欺騙、電子戰和作為目標等類別 [38],[39]。在本案例研究中,我們重點關注偵察無人機的智能化。案例研究中的無人機以韓國 "Poongsan "公司的無人機為模型。根據應用模塊的不同,該模型可以執行多種任務。不過,本研究使用的是配備偵察模塊的無人機。模塊包括攝像頭、LRF、GNSS 等傳感器和系統。在規范假設方面,假定無人機能夠配備物體檢測和強化學習神經網絡。

圖 4. 用于訓練 YOLOv4 微型目標檢測模型的跟蹤車輛圖像。

圖 12. 根據 Unity 中的情景驗證技術應用

付費5元查看完整內容

相關內容

人工智能在軍事中可用于多項任務,例如目標識別、大數據處理、作戰系統、網絡安全、后勤運輸、戰爭醫療、威脅和安全監測以及戰斗模擬和訓練。

本文介紹了一種為戰場環境量身定制的動態三維場景感知創新系統,該系統利用配備雙目視覺和慣性測量單元(IMU)的無人智能體。該系統處理雙目視頻流和 IMU 數據,部署先進的深度學習技術,包括實例分割和密集光流預測,并通過專門策劃的目標數據集加以輔助。通過集成 ResNet101+FPN 骨干進行模型訓練,作戰單元類型識別準確率達到 91.8%,平均交叉比聯合(mIoU)為 0.808,平均精度(mAP)為 0.6064。動態場景定位和感知模塊利用這些深度學習輸出來完善姿態估計,并通過克服通常與 SLAM 方法相關的環境復雜性和運動引起的誤差來提高定位精度。

在模擬戰場元環境中進行的應用測試表明,與傳統的 ORB-SLAM2 立體方法相比,自定位精度提高了 44.2%。該系統能有效地跟蹤和注釋動態和靜態戰場元素,并利用智能體姿勢和目標移動的精確數據不斷更新全局地圖。這項工作不僅解決了戰場場景中的動態復雜性和潛在信息丟失問題,還為未來增強網絡能力和環境重建方法奠定了基礎框架。未來的發展將側重于作戰單元模型的精確識別、多代理協作以及三維場景感知的應用,以推進聯合作戰場景中的實時決策和戰術規劃。這種方法在豐富戰場元宇宙、促進深度人機交互和指導實際軍事應用方面具有巨大潛力。

付費5元查看完整內容

本研究論文介紹了軍用無人機系統盒(The NeuronDrone-Box)中用于攻擊或防御決策的全自主人工智能:硬件、算法和一種新型專用軍用無人機或無人機。第一部分介紹了軍用無人機系統盒(The NeuronDrone-Box)中的攻擊或防御決策全自主人工智能,以適應任何無人機的主控系統。第二部分是使用混沌理論和經濟地理學的算法。第三部分介紹了被稱為 "黑色噩夢 V.7" 的開創性原型機。黑色噩夢 V.7 無人機投彈手擁有一系列與眾不同的功能和應用,本技術報告將對此進行詳細介紹。首先,主張在軍用無人機系統箱(The NeuronDrone-Box)中實施全自主人工智能攻防決策,以控制與全自主人工智能攻防決策軍用無人機系統箱(The NeuronDrone-Box)相連的多副翼系統(MAS)和多導彈系統(MM-System)。

付費5元查看完整內容

在安全關鍵型應用中,驗證和認證人工智能驅動的自主系統(AS)所做的決策至關重要。然而,這些系統中使用的神經網絡的黑盒性質往往使實現這一目標具有挑戰性。這些系統的可解釋性有助于驗證和認證過程,從而加快其在安全關鍵型應用中的部署。本研究通過語義分組獎勵分解研究了人工智能驅動的空戰智能體的可解釋性。論文介紹了兩個使用案例,以展示這種方法如何幫助人工智能和非人工智能專家評估和調試RL智能體的行為。

圖 3. 訓練有素的 RL 智能體跟蹤性能。左上圖為鳥瞰圖。右上圖是從藍色智能體框架透視的,每個綠色圓圈的半徑為 1000 米。下圖是分解獎勵條形圖,黑色 x 符號代表選擇的行動,其他 x 符號代表與每個 DQN 的最大預期獎勵相關的行動,它們分別代表各自的獎勵類型。

付費5元查看完整內容

本文報告了在使用基于遺傳學的機器學習過程和戰斗模擬發現新型戰斗機機動系統方面的經驗。實際上,這一應用中的遺傳學習系統正在取代測試平臺,從經驗中發現復雜的動作。這項工作的目標與許多其他研究不同,因為創新和發現新穎性本身就是有價值的。這使得目標和技術的細節與其他基于遺傳學的機器學習研究有所不同。

本文討論了應用的細節、動機以及所采用技術的細節。介紹了一個玩家適應固定策略對手的系統和兩個玩家共同適應的系統的結果。論文還討論了這項工作在其他自適應行為應用中的普遍意義。

付費5元查看完整內容

目前正在研究無人駕駛飛行器(UAV)在搜救和國防任務等方面的應用潛力。其目標是加強情報、通信和戰略組織。決策技術可實現無人飛行器的智能決策,從而將人類指揮官解放出來,專注于更高層次的決策。本研究側重于國防和搜救場景,并將基于人工智能的決策與無人機相結合。研究分析了防御場景中的“忠誠僚機”概念。此外,還提出了無人機群在救援場景中合作搜索人員的解決方案。研究結果證明了分布式決策方法在解決這兩個場景中的問題時的有效性。

圖 1. 在該場景中,“忠誠僚機”無人機(以藍色標出)在地面資產的支持下,為一架領隊無人機護航,并與神風特攻隊威脅交戰,以保衛一個保護區。

研究無人機群的決策對于優化各行各業的性能、自主性和安全性至關重要。了解復雜場景中的蜂群智能、人與蜂群的互動以及蜂群行為,可以推動先進的蜂群技術,改變行業并應對挑戰。這項研究對于民用和軍事應用至關重要,例如搜救任務和部署航空業新興的戰斗無人機--忠誠僚機無人機(UAV)。

本研究調查了如何利用具有作戰能力的 "忠誠僚機"(LW)無人機合作打擊空中爆炸物威脅。重點是有人無人小組(MUM-T)防御方案,即 LW 無人機保護領導無人機和關鍵基礎設施。該研究考慮了全動無人機模型[Santos and Bezerra 2022],并提出了高層決策任務的問題分解,從而在 MUM-T 內實現有效的協調與協作。該項目采用有限狀態機(FSM)和行為樹(BT)作為人工智能技術來設計自主無人機行為。庫恩-蒙克雷斯任務分配算法被用于任務分配,促進了團隊的凝聚力。該研究還將合作參與能力(CEC)擴展到無人機,并研究了 CEC 概念下異構無人機群中的分布式自主決策,旨在加強合作參與策略。將自主無人機系統與 CEC 相結合有望提高任務效率和成功率。

此外,這項工作還將無人機群用于搜救(SAR)應用。將無人機技術整合到搜救任務中代表了應急響應能力的突破性進步,因為它利用了無人機系統的集體力量和效率。通過使用無人機群,搜索和救援行動可以徹底改變我們應對緊急情況和拯救生命的方式。通過將先進的蜂群智能算法集成到無人機中,這項研究旨在優化搜救任務,最終拯救生命。在這項工作中,我們描述了無人機群在森林中搜尋遇險人員的場景。為了解決這個問題,我們采用了一種結合機器人技術和人工智能決策的方法。這項工作的目標是,在未來,無人機群將成為危機管理中不可或缺的盟友,迅速定位并幫助遇險人員,為急救人員提供寶貴的支持。請注意,本作品中的兩個場景是一項統一研究的組成部分,該研究探討了無人機群在模擬環境中分散決策的應用。

本文的結構如下。第 2 節介紹背景。第 3 節介紹忠誠僚機的應用、實驗和結果。此外,第 4 節還介紹了搜救應用、實驗和結果。最后,第 5 節對本文進行總結。

忠誠僚機場景

為了在有人駕駛無人機團隊(MUM-T)中探索合作交戰能力(CEC)的概念,我們提出了一個防御方案[Giacomossi 等人,2021a;Ricardo 等人,2023],其中涉及兩個由全驅動無人機組成的團隊。MUM-T 團隊由 "忠誠僚機"(Loyal Wingman,LW)無人機組成,這些無人機與有人駕駛的領隊編隊飛行,為領隊和保護區(PA)提供防御。相比之下,敵對團隊則由神風特攻隊組成,如圖 1 所示。MUM-T 小隊的主要目標是防止領導者或保護區受到任何損害。如果領導者或 PA 被摧毀,則任務失敗。此外,為了支持 MUM-T 小組成員,PA 還配備了能夠提供空中監視的地面資產。

LW 具有自主性,能夠根據態勢感知信息做出智能決策。為了消除威脅,LW 裝備了兩種假想武器,一種是中程冷凍槍,另一種是短程汽化槍。汽化槍可以解除威脅,而冷凍槍則可以將威脅的速度減慢到其最大速度的一半。武器模型經過簡化,命中成功率按給定概率計算。需要注意的是,冷凍槍的目的是使決策空間更加復雜,而蒸發槍也是一種理想化的武器,它使用能量來破壞電子元件。

領隊由人類遠程控制,負責編隊協調,即能夠向僚機傳遞相對坐標指令。我們假定忠誠的僚機在一個預定的編隊模式內飛行。在本文中,我們認為這種獨特的編隊模式是沿本地水平面以所需半徑進行的勻圓編隊。我們還假設領隊始終能夠在需要時指揮忠誠的僚機。

相比之下,神風特攻隊無人機會在與領隊、僚機或 PA 相撞后引爆,對目標造成破壞。神風特攻隊一旦選定目標,就會緊追不舍,直至自爆或解除攻擊。神風敢死隊的數量保持不變,因為它們在中和后會立即重新生成,確保攻擊源源不斷。雖然神風特攻隊擁有簡化的人工智能,但它們比 MUM-T 速度更快、數量更多,這迫使 MUM-T 必須進行有效合作才能解除攻擊。地面資產共享態勢感知,提供包含所有實體狀態(位置、姿態和線速度)的矢量。

付費5元查看完整內容

在新興的蜂群技術領域,無人機系統條令作為一種規定性的設計要素,一直處于缺乏、潛伏或被忽視的狀態。本文討論了一種與蜂群無人機系統任務條令并行的設計蜂群無人機系統的綜合方法。該方法的結構源自基于模型的系統工程、機器人學、人類系統集成、生物學和計算機科學等學科的啟發式方法。該方法為設計和操作蜂群無人機系統提供了一種標準方法,力求滿足任何預定任務的性能和條令要求。

蜂群體系結構的設計應支持 "少而精"、廣泛分散、高度網絡化、脈沖式攻擊的條令。一般來說,蜂群系統主要采用三種總體指揮與控制(C2)架構:協調控制、集中控制或分級控制,以及分布式控制或分散控制(Dekker,2008 年)。在協調控制中,根據指定的瞬時因素(如位置、狀態、任務場景)選擇一個智能體作為臨時領導者。領導者從其他智能體接收傳感器數據,并廣播融合后的共同綜合畫面。如果領導者失效,則會選擇一個替代者繼續扮演這一角色。這種架構具有一定的魯棒性,但無法擴展到更大的智能體群或地理位置分散的智能體群,而且會給一個智能體帶來很大的處理負擔。集中式控制架構類似于傳統的軍事指揮與控制結構,在這種結構中,智能體按層級組織,詳細的戰術信息通過指揮鏈向上反饋。雖然這種分層設計簡化了數據流,但并不穩健,在處理需要智能體快速反應的動態場景時缺乏靈活性。對蜂群進行集中控制需要一個樞紐-輻條式通信架構,這種架構有幾個缺點:它限制了蜂群的自主行為,無法實現智能體之間的通信,而且在設計中會出現單點故障(Chung 等人,2013 年)。分布式架構的特點是沒有領導者;而是通過智能體之間的集體共識做出蜂群決策。這種架構具有穩健性和可擴展性,但要求通信網絡能夠支持可能增加的數據流量。與蜂群系統設計的其他要素一樣,C2 架構的混合體也可用于發揮各自的優勢。美國海軍的 "合作參與能力"(Cooperative Engagement Capability)防空作戰系統采用分布式架構來獲取態勢感知數據,并采用協調架構來選擇目標定位(Dekker,2008 年)。分散控制架構,包括基于市場(或拍賣)的方法,以及隱式衍生的單智能體解決方案,已在蜂群無人機系統中得到成功驗證(Chung 等人,2013 年)。由于這些原因,無線網狀通信網絡被認為是蜂群無人機系統通信架構的一種潛在的關鍵使能形式(Frew,2008 年)。

有限狀態機(FSM)(或有限狀態自動機)已被證明可有效模擬多車自主無人系統架構(Weiskopf 等人,2002 年)。在有限狀態自動機架構中,每個智能體在給定時間內都處于幾種定義狀態之一。智能體感知到的環境條件或遇到的事件會觸發觸發事件,導致智能體在不同狀態間轉換。這種類型的結構適用于開發軍事蜂群系統,因為狀態和觸發器可以確定性地定義(就像交通信號燈一樣),這對于目標攻擊等高風險任務事件是必要的。相反,在搜索等其他任務事件中,可能需要一定程度的不可預測性。在這種情況下,可以使用概率有限狀態機 (PFSM)(或概率有限狀態自動機),允許在一個狀態內有不同的行為,或在狀態之間提供多種轉換(Paranuk,2003 年)。

付費5元查看完整內容

本研究探討了無人駕駛飛行器(UAV)與有人駕駛飛機合作進行集中任務規劃的發展情況。我們采用經過近端策略優化(PPO)訓練的單一智能體來模擬敵方防空壓制(SEAD)場景。我們的目標是掌握最佳任務策略。我們的模型在各種環境條件下進行了測試,在 100 次測試中,消除敵方防御的成功率達到 78%。我們的模型所取得的巨大成功強調了它在未來戰爭場景中的應用潛力,代表了空戰和強化學習應用領域的重大進展。

方法

集中式任務規劃架構

集中式任務規劃架構是指一種先進的技術架構,能夠在復雜多變的作戰場景中高效協調和管理無人機。該架構從各種信息來源收集數據,實時評估局勢,并規劃和執行最佳戰略,以最大限度地提高整個任務的成功潛力。

該架構的主要組成部分如下:

  1. 戰斗信息管理: 該組件持續監控當前的戰斗態勢并跟蹤信息,以提供實時戰場情報。信息來源多種多樣,包括各種傳感器、傳感器網絡和人工觀察,從而能夠深入了解動態復雜的作戰環境。這相當于強化學習中收集環境信息的過程,為有效的學習過程提供了第一步。

  2. 戰斗狀態(觀察): 在這一階段,戰場信息被提供給智能體。在戰場上收集到的各種信息會被實時處理,并傳遞給強化學習智能體。這樣,智能體就能通過綜合戰場態勢感知了解當前形勢,預測未來的可能性,并決定下一步行動。

3)任務規劃器(智能體): 作為中心的核心要素,這個基于強化學習的智能體根據傳入的實時作戰態勢數據做出最優行動。這一決策過程由一個預訓練的強化學習模型執行,該模型學習如何在復雜環境中實現任務目標。

  1. 指揮官: 最后,智能體的決策將交由指揮官執行。智能體決定的行動將作為指令傳遞給實際的無人機,從而實現移動、目標探測和攻擊等具體任務。

因此,集中任務規劃架構實現了從各種信息源收集和處理數據、規劃和調整無人機行動以適應實時戰場條件的戰略。這就實現了實時戰略決策和快速反應,提高了整體作戰效率和生存能力。

強化學習環境的構建

我們為 MUM-T 問題開發了一個量身定制的強化學習環境。在這個環境中,我們部署了一架戰斗機無人機、一個干擾器和一個防空導彈系統,每個系統都有預定義的攻擊范圍和干擾距離。任務的主要目標是協同參與干擾行動,使目標防空導彈系統失效,隨后通過操縱戰斗機無人機將其消滅。任務的成功完成取決于是否到達指定的目標點。

在無人機任務規劃的背景下,我們為 MUM-T 構建了一個定制的強化學習環境。在 MUM-T 環境中,我們部署了一架戰斗機無人機、一個干擾器和防空導彈系統,每個系統都有明確的攻擊范圍和干擾距離。任務的最終目標是與干擾機進行合作干擾,使防空導彈無法攻擊,隨后通過操縱戰斗機無人機摧毀防空導彈。當無人機到達最終目的地(稱為 "目標點")時,即成功完成任務。

為了開發環境,我們使用了 Gym 庫,這是一個用于強化學習環境的開源框架。無人飛行器可以移動的空間用二維網格表示。由于無人機的航向和速度等低層次控制方面的問題假定由 AFRL ACL 5 級自主處理,因此集中式任務規劃框架側重于負責規劃任務相關值(即航點和任務點)的高層次控制,這些值基于多架無人機的信息和戰場狀態。為促進學習過程,我們將任務空間離散化為 30x30 的網格,共由 900 個單元組成。

每個無人機的行動空間被定義為離散的多行動空間,使每個智能體能夠獨立選擇行動。戰斗機無人機和干擾機有五種可能的行動:向左、向右、向上、向下和攻擊。行動空間的離散化簡化了學習和控制[圖 5、6]。

在每個時間步長內,智能體根據其選擇的行動在網格環境中移動。我們施加了邊界條件(懲罰),以防止無人機在網格邊界外移動。此外,我們還通過檢測碰撞并分配相應的懲罰來處理戰斗機和干擾機之間的潛在碰撞。為了解決無人飛行器之間的協作問題,我們為智能體之間的特定功能和互動建立了模型。當干擾機進行干擾時,如果薩母不在攻擊范圍內,則會產生懲罰。但是,如果防空導彈在攻擊范圍內,干擾成功則會獲得獎勵,使防空導彈無法使用。戰斗機總共有五次攻擊機會,攻擊失敗(當防空導彈不在攻擊范圍內時)會導致失去一次攻擊機會并受到懲罰。另一方面,如果防空導彈在規定的攻擊范圍內,防空導彈就會失效,并獲得獎勵。重要的是,如果戰斗機沒有進行干擾,則無法攻擊,因為戰斗機的攻擊范圍小于干擾距離。

付費5元查看完整內容

為了真實地再現軍事行動,嚴肅的戰斗模擬要求建模實體具有合理的戰術行為。因此,必須定義作戰戰術、條令、交戰規則和行動概念。事實證明,強化學習可以在相關實體的行為邊界內生成廣泛的戰術行動。在多智能體地面作戰場景中,本文展示了人工智能(AI)應用如何制定戰略并向附屬單元提供命令,同時相應地執行任務。我們提出了一種將人類知識和責任與人工智能系統相結合的方法。為了在共同層面上進行交流,人工智能以自然語言下達命令和行動。這樣,人類操作員就可以扮演 "人在回路中 "的角色,對人工智能的推理進行驗證和評估。本文展示了自然語言與強化學習過程的成功整合。

RELEGS:針對復雜作戰情況的強化學習

為了獲得模型架構的靈感,我們研究了 DeepMind 的 AlphaStar 架構,因為它被認為是復雜 RL 問題領域的最先進架構。通過我們的架構(如圖 2 所示),我們提出了一種靈活、可擴展的行動空間與深度神經網絡相結合的適應性新方法。觀察空間的設計基于如何準備戰場的軍事經驗。通常使用地圖和可用部隊表。因此,模擬觀測被分為標量數據(如可用坦克數量及其彈藥)。同時,基于地圖的輸入作為視覺輸入提供給空間編碼器。

標量數據用于向人工智能提供幾乎所有場景細節的建議。其中包括有關自身部隊及其平臺的數據,以及有關敵方部隊的部分信息。輸入并非以絕對數字給出,而是采用歸一化方法來提高訓練效果。編碼器可以很容易地寫成多層感知器(MLP);不過,使用多頭注意力網絡可以大大提高訓練后智能體的質量,因此應予以采用(Vaswani 等人,2017 年)。

為了理解地理地形、距離和海拔高度的含義,人工智能會被輸入一個帶有實體編碼的地圖視覺表示。顏色方案基于三通道圖像,這使我們能夠輕松地將數據可視化。雖然使用更多通道會給人類的圖形顯示帶來問題,但人工智能能夠理解更多通道。不同的字段類型和實體會用特殊的顏色進行編碼,以便始終能夠區分。這種所謂的空間編碼器由多個卷積層組成。最初,我們嘗試使用 ResNet-50 (He 和 Zhang,2016 年)和 MobileNetV3 (Howard 等,2019 年)等著名架構,甚至使用預先訓練的權重。然而,這并沒有帶來可接受的訓練性能。因此,我們用自己的架構縮小了卷積神經網絡(CNN)的規模。

為了測試和優化這一架構,我們使用了一個自動編碼器設置,并使用了模擬中的真實樣本。我們能夠將參數數量從大約 200 萬減少到大約 47000。此外,我們還生成了一個預訓練模型,該模型已與模擬的真實觀測數據相匹配。這一步極大地幫助我們加快了 RL 進程。

一個可選元素是添加語言輸入,為人工智能定義任務。雖然一般的戰略人工智能不使用這一元素,但計劃將其用于下屬智能體。這些智能體將以自然語言接收來自戰略人工智能的任務,并使用雙向門控遞歸單元(GRU)編碼器對其進行處理。

視覺數據、任務數據和標量數據的編碼值被合并并輸入核心網絡。根據 Hochreiter 和 Schmidhuber(1997 年)的介紹,核心主要是一個擁有 768 個單元的長短期記憶(LSTM)組件。在軍事場景中,指揮官必須了解高價值資產的長期戰略規劃。在本模擬中,人工智能可以請求戰斗支援要素,這些要素在影響戰場之前需要長達 15 分鐘的時間。因此,人工智能必須了解未來任務的時間安排和規劃。在 RL 中使用 LSTM 網絡相當困難,因為它需要大量的訓練時間,而且會導致上面各層的梯度消失。因此,我們決定在 LSTM 上添加一個跳過連接,以盡量減少新增層的負面影響。

動作頭由一個自然語言處理(NLP)模型組成。這是一個非常簡化的動作頭模型,包含一個小型 LSTM 和一個額外的密集層,共有約 340000 個參數。其結果是一個尺寸為 8 x 125 的多離散動作空間。

除主模型外,還有一個單獨的價值網絡部分。價值網絡使用核心 LSTM 的輸出,并將對手信息串聯起來傳遞給 MLP。然后,MLP 可以精確預測價值函數。通過對手信息,價值網絡對模擬有了一個上帝般的地面實況視圖。由于該網絡只與訓練相關,因此可以在不干擾訓練完整性的情況下進行。

付費5元查看完整內容

本文所介紹的研究得到了德國聯邦國防軍裝備、信息技術和在役支持辦公室 (BAAINBw) 的支持。

有人無人編隊是提高民用和軍事行動效率的一個關鍵方面。本文概述了一個為期四年的項目,該項目旨在開發和評估有人-無人編隊飛行的方法。編隊飛行場景是針對執行近距離編隊飛行的有人和無人駕駛旋翼機量身定制的。本文介紹了使用案例和測試方法。開發了兩種編隊飛行算法,并對照基于航點的預編程基線進行了評估。評估是在由不同飛行員參與的模擬器活動和由一名評估飛行員參與的飛行測試活動中進行的。在最后的飛行測試活動中,首次實現了有人駕駛和無人駕駛直升機之間的耦合近距離編隊飛行。最后,本文包含了飛行測試和模擬器測試的結果。

人機編隊飛行

在德國航天中心 MUM-T 研究期間,對三種一般編隊策略進行了調查。

第一種方法在評估過程中被用作基線。這種方法被稱為航點模式,假定有人駕駛直升機的機組人員通過基于航點的界面指揮無人機的移動。這種基于航點的導航是無人直升機最先進的能力。由于耗時和可能的輸入錯誤,飛行任務需要大量的準備時間。由于缺乏靈活性,無人直升機被認為是編隊的領導者。因此,載人直升機跟隨無人機的飛行模式并保持編隊,同時監控空間間隔以避免碰撞。在這種模式下,載人直升機可以隨時離開編隊,但只要編隊還在,就必須監控兩架飛機之間的距離。通過引入最小距離或半徑(稱為安全半徑)來確保飛行安全。圖 1 給出了簡要概述。

請注意,編隊的領隊是確定飛行速度或方向等飛行參數的飛機。在 DLR MUM-T 飛行測試活動中,出于安全考慮,無人機始終位于載人直升機之前。

第二種基于相對導航的方法在下文中稱為 RelNav。在這種模式下,無人機使用控制器保持與載人直升機的相對位置。有關編隊飛行控制模式的詳細介紹,請參閱參考文獻[21]。[21]. 在該模式下,無人直升機與有人駕駛直升機直接耦合,無人機跟隨有人駕駛直升機飛行,不執行任何規定任務。在 RelNav 模式下,有人駕駛直升機指揮編隊,無人機保持相對位置。此外,還在有人駕駛直升機前方劃定了一個安全區域,從駕駛艙可以目視到無人直升機,以提高飛行安全性。在圖 2 中,該區域顯示為允許區域,而最小距離則表示為安全半徑。

第三種方法旨在將 RelNav 模式中任務期間改變飛行路線的靈活性與航點模式中載人直升機不直接耦合運動相結合。這種模式被命名為 "走廊模式",因為它的主要特征是 "走廊"。走廊是一種類似航點的任務,具有規定的速度和轉彎,但使用的不是規定的航點位置,而是允許的無障礙區域。在 "走廊 "模式下,無人飛行器會沿著走廊飛行,但如果違反了規定的邊界,則會發出額外的速度指令。這些邊界可以是最大或最小距離,也可以是相對于載人直升機的某個方向。在這種模式下,無人機能夠對載人直升機的行為做出反應,但對細微的航向或速度變化不太敏感。無人機在走廊模式下的行為可分為兩種不同情況。首先,在標稱行為中,無人機完全處于走廊的邊界內。因此,無人飛行器是按照規定的走廊飛行。邊界上有預定義的緩沖區,為防止違反邊界,會對無人飛行器發出速度指令。無人機在接近允許區域的邊界或允許走廊的邊界時會改變行為。在這兩種情況下,如果同時到達兩個邊界,就會產生一個速度指令,以防止違反邊界;詳細計算可參見參考文獻[21]。[21]。 如果違反了允許走廊的邊界,無人飛行器應切換到 RelNav 模式。或者,如果走廊和載人直升機的允許區域都被侵犯,無人機應切換到航點模式。圖 3 是走廊模式的示意圖。

為確保飛行安全,該項目還開發了另一種應急模式,該模式被命名為 "脫離模式"。在任何 MUMT 編隊飛行中,該子模式始終可用。如果違反了安全關鍵邊界或出現技術缺陷,就會啟用該模式。該模式將兩架飛機分離,并觸發無人機的預定義行為。載人直升機的脫離行為被定義為 90° 轉身離開無人機并爬升約 150 英尺。

引入的 MUM-T 模式具有不同的自動化程度。不過,要實現安全的 MUM-T 編隊飛行,必須執行幾項共同任務。它們是:

領導編隊:一架飛機(稱為領隊)確定編隊參數(如速度、高度或航跡)。

避免碰撞:這項任務要求監控飛機之間的距離,并對任何違反安全規定的情況做出反應。

保持編隊:監控編隊領隊位置并保持相對位置不變是保持編隊的任務。

付費5元查看完整內容

本報告記錄了通過利用深度學習(DL)和模糊邏輯在空間和光譜領域之間整合信息,來加強多模態傳感器融合的研究成果。總的來說,這種方法通過融合不同的傳感器數據豐富了信息獲取,這對情報收集、數據傳輸和遙感信息的可視化產生了積極的影響。總體方法是利用最先進的數據融合數據集,為并發的多模態傳感器數據實施DL架構,然后通過整合模糊邏輯和模糊聚合來擴展這些DL能力,以擴大可攝入信息的范圍。這項研究取得的幾項進展包括:

  • 將DL模型實施到片上系統(SoC)硬件中
  • 高光譜圖像(HSI)數據的DL
    • 1.在HSI上建立DL,以獲得水的特性和底層深度
    • 2.在HSI上使用開放集識別方法
  • 框架內融合方法的消融研究
  • 使用DL和模糊聚合的HSI和LiDAR多模態傳感器融合的新框架
  • 探討神經模糊邏輯在遙感數據中復雜場景的不確定性下自動推理的作用和實用性

出版物[1, 2, 3, 4, 5]進一步詳細介紹了取得的進展。

付費5元查看完整內容
北京阿比特科技有限公司