?介紹
這本書在保持非常務實的教導和結果導向付出很大的精力。構建聊天機器人不只是完成一個教程或遵循幾個步驟,它本身就是一種技能。這本書肯定不會用大量的文本和過程讓你感到無聊;相反,它采用的是邊做邊學的方法。到目前為止,在你的生活中,你肯定至少使用過一個聊天機器人。無論你是不是一個程序員,一旦你瀏覽這本書,你會發現構建模塊的聊天機器人,所有的奧秘將被揭開。建立聊天機器人可能看起來很困難,但這本書將讓你使它如此容易。我們的大腦不是用來直接處理復雜概念的;相反,我們一步一步地學習。當你讀這本書的時候,從第一章到最后一章,你會發現事情的進展是多么的清晰。雖然你可以直接翻到任何一章,但我強烈建議你從第一章開始,因為它肯定會支持你的想法。這本書就像一個網絡系列,你在讀完一章之后就無法抗拒下一章的誘惑。在閱讀完這本書后,你所接觸到的任何聊天機器人都會在你的腦海中形成一幅關于聊天機器人內部是如何設計和構建的畫面。
這本書適合誰?
這本書將作為學習與聊天機器人相關的概念和學習如何建立他們的一個完整的資源。那些將會發現這本書有用的包括: Python web開發人員希望擴大他們的知識或職業到聊天機器人開發。 學生和有抱負的程序員想獲得一種新的技能通過親身體驗展示的東西,自然語言愛好者希望從頭開始學習。 企業家如何構建一個聊天機器人的偉大的想法,但沒有足夠的技術關于如何制作聊天機器人的可行性信息。 產品/工程經理計劃與聊天機器人相關項目。
如何使用這本書?
請記住,這本書的寫作風格和其他書不一樣。讀這本書的時候要記住,一旦你完成了這本書,你就可以自己建造一個聊天機器人,或者教會別人如何建造一個聊天機器人。在像閱讀其他書籍一樣閱讀這本書之前,務必記住以下幾點:
內容概要
當前關于機器學習方面的資料非常豐富:Andrew NG在Coursera上的機器學習教程、Bishop的《機器學習與模式識別》 和周志華老師的《機器學習》都是非常好的基礎教材;Goodfellow等人的《深度學習》是學習深度學習技術的首選資料;MIT、斯坦福等名校的公開課也非常有價值;一些主要會議的Tutorial、keynote也都可以在網上搜索到。然而,在對學生們進行培訓的過程中, 我深感這些資料專業性很強,但入門不易。一方面可能是由于語言障礙,另一個主要原因在于機器學習覆蓋 面廣,研究方向眾多,各種新方法層出不窮,初學者往往在各種復雜的名詞,無窮無盡的 算法面前產生畏難情緒,導致半途而廢。
本書的主體內容是基于該研討班形成的總結性資料。基于作者的研究背景,這本書很難說 是機器學習領域的專業著作,而是一本學習筆記,是從一個機器學習 技術使用者角度對機器學習知識的一次總結,并加入我們在本領域研究中的一些經驗和發現。與其說是一本教材,不如說是一本科普讀物, 用輕松活潑的語言和深入淺出的描述為初學者打開機器學習這扇充滿魔力的大門。打開大門以后,我們會發現這是個多么讓人激動人心的 領域,每天都有新的知識、新的思路、新的方法產生,每天都有令人振奮的成果。我們希望這本書 可以讓更多學生、工程師和相關領域的研究者對機器學習產生興趣,在這片異彩紛呈的海域上找到 屬于自己的那顆貝殼。
強烈推薦給所有初學機器學習的人,里面有: 書籍的pdf 課堂視頻 課堂slides 各種延伸閱讀 MIT等世界名校的slides 學生的學習筆記等
對于語音計算領域的開發者來說,這是一個激動人心的時刻:谷歌上每4次搜索中就有1次是支持語音的,亞馬遜Alexa剛剛超過1萬個技能,WhatsApp上每天完成1億個通話。但是你從哪里開始學習如何在這個領域編碼呢?
無論您是一位經驗豐富的開發人員還是剛剛起步,這本書都將指導您使用Python構建基于語音的應用程序。
Python Workout提供了50個練習,重點是Python 3的關鍵特性。在這本書中,Python專家教練魯文·勒納(Reuven Lerner)通過一系列小項目指導你,練習你處理日常任務所需的技能。你會喜歡每個技巧的清晰解釋,你可以觀看Reuven解決每個練習的視頻。
//www.manning.com/books/python-workout
在過去的幾年中,Python已經進入了許多領域,包括系統管理、數據科學、devops、文本處理和Web開發。因此,現在有許多課程和書籍旨在教授Python。
本書分為10章,每一章涵蓋Python的不同領域。總的來說,隨著本書的發展,問題會變得越來越復雜——但這并不意味著我要等到“函數”一章才開始使用函數,或者等到“函數編程”一章才開始理解函數。你可以使用任何你認為必要的工具。
每一章都以一個參考表開始,包括鏈接,指向可能幫助你更好地理解你已經忘記或從未學過的主題的資源。我希望這些將幫助您加強對Python的理解,而不僅僅是本書本身。
除了練習和解決方案,還有視頻,在其中我演示如何解決每個問題,并添加到我在書中的討論。解決方案和你在書中讀到的一樣,但對很多人來說,視頻讓整個過程更加生動;你會在我的現場培訓課程中得到更多的感覺。此外,查看編碼和解決過程的時間變化通常很有幫助,而不是在頁面上一次性查看所有內容。使用視頻片段的最佳方法是同時打開該書和視頻(在Manning的liveVideo平臺中)。對于每個練習,從書開始,完成每個練習,如果你喜歡,閱讀解決方案和討論。然后點擊相應的視頻片段,看我演示解決方案,并為討論提供進一步的見解。
有興趣的數據科學專業人士可以通過本書學習Scikit-Learn圖書館以及機器學習的基本知識。本書結合了Anaconda Python發行版和流行的Scikit-Learn庫,演示了廣泛的有監督和無監督機器學習算法。通過用Python編寫的清晰示例,您可以在家里自己的機器上試用和試驗機器學習的原理。
所有的應用數學和編程技能需要掌握的內容,在這本書中涵蓋。不需要深入的面向對象編程知識,因為工作和完整的例子被提供和解釋。必要時,編碼示例是深入和復雜的。它們也簡潔、準確、完整,補充了介紹的機器學習概念。使用示例有助于建立必要的技能,以理解和應用復雜的機器學習算法。
對于那些在機器學習方面追求職業生涯的人來說,Scikit-Learn機器學習應用手冊是一個很好的起點。學習這本書的學生將學習基本知識,這是勝任工作的先決條件。讀者將接觸到專門為數據科學專業人員設計的蟒蛇分布,并將在流行的Scikit-Learn庫中構建技能,該庫是Python世界中許多機器學習應用程序的基礎。
你將學習
這本書是給誰的
機器學習已經成為許多商業應用和研究項目中不可或缺的一部分,但這一領域并不僅限于擁有廣泛研究團隊的大公司。如果您使用Python,即使是初學者,這本書也會教你構建自己的機器學習解決方案的實用方法。今天,有了所有可用的數據,機器學習應用程序只受限于你的想象力。
您將學習使用Python和scikit-learn庫創建成功的機器學習應用程序所需的步驟。兩位作者安德烈亞斯?穆勒(Andreas Muller)和薩拉?圭多(Sarah Guido)關注的是使用機器學習算法的實踐層面,而不是背后的數學。熟悉NumPy和matplotlib庫將有助于您從本書獲得更多信息。
通過這本書,你會學到 :
從設計和原型設計到測試、部署和維護,Python在許多方面都很有用,它一直是當今最流行的編程語言之一。這本實用的書的第三版提供了對語言的快速參考——包括Python 3.5、2.7和3.6的突出部分——它龐大的標準庫中常用的區域,以及一些最有用的第三方模塊和包。
本書非常適合具有一些Python經驗的程序員,以及來自其他編程語言的程序員,它涵蓋了廣泛的應用領域,包括web和網絡編程、XML處理、數據庫交互和高速數字計算。了解Python如何提供優雅、簡單、實用和強大功能的獨特組合。
這個版本包括:
使用Python進行自然語言處理(NLP),學習如何設置健壯環境來執行文本分析。這第二版經歷了一個重大的修改,并介紹了幾個重要的變化和基于NLP的最新趨勢的新主題。
您將了解如何在NLP中使用最新的、最先進的框架,以及機器學習和深度學習模型,用于Python支持的監督情感分析,以解決實際的案例研究。首先回顧Python中關于字符串和文本數據的NLP基礎知識,然后討論文本數據的工程表示方法,包括傳統的統計模型和新的基于深度學習的嵌入模型。本文還討論了解析和處理文本的改進技術和新方法。
文本摘要和主題模型已經全面修訂,因此本書展示了如何在NIPS會議論文的興趣數據集上下文中構建、調整和解釋主題模型。此外,這本書涵蓋了文本相似性技術與現實世界的電影推薦人的例子,以及情緒分析使用監督和非監督的技術。還有一章專門討論語義分析,您將了解如何從頭構建自己的命名實體識別(NER)系統。雖然該書的整體結構保持不變,但整個代碼庫、模塊和章節都已更新到最新的Python 3。x版本。
你將學習
這本書是給誰的
介紹使用spaCy使用Python進行自然語言處理,spaCy是一個領先的Python自然語言處理庫。
使用Python和spaCy進行自然語言處理將向您展示如何快速輕松地創建聊天機器人、文本壓縮腳本和訂單處理工具等NLP應用程序。您將了解如何利用spaCy庫智能地從文本中提取含義;如何確定句子中詞語之間的關系(句法依賴分析);識別名詞、動詞和其他詞類(詞性標注);并將專有名詞分類,如人員、組織和地點(識別命名實體)。你甚至會學到如何將陳述轉換成問題來保持對話的進行。您還將學習如何:
每一章的“嘗試這個”部分鼓勵您通過擴展該書的示例腳本來處理更廣泛的輸入、添加錯誤處理和構建專業質量的應用程序,從而實踐您所學到的知識。在本書的最后,您將使用Python和spaCy創建自己的NLP應用程序。
Yuli Vasiliev是一名程序員、自由撰稿人和顧問,專門從事開源開發、Oracle數據庫技術和自然語言處理。
Introduction
Chapter 1: How Natural Language Processing Works Chapter 2: The Text-Processing Pipeline Chapter 3: Working with Container Objects and Customizing spaCy Chapter 4: Extracting and Using Linguistic Features Chapter 5: Working with Word Vectors Chapter 6: Finding Patterns and Walking Dependency Trees Chapter 7: Visualizations Chapter 8: Intent Recognition Chapter 9: Storing User Input in a Database Chapter 10: Training Models Chapter 11: Deploying Your Own Chatbot Chapter 12: Implementing Web Data and Processing Images Linguistic Primer
簡介:
探索用Python編寫代碼的正確方法。這本書提供的技巧和技術,你需要生產更干凈,無錯誤,和雄辯的Python項目。
要獲得更好的代碼,首先要理解對代碼進行格式化和編制文檔以獲得最大可讀性的重要性,利用內置的數據結構和Python字典來提高可維護性,并使用模塊和元類來有效地組織代碼。然后,您將深入了解Python語言的新特性,并學習如何有效地利用它們。接下來,您將解碼關鍵概念,如異步編程、Python數據類型、類型提示和路徑處理。學習在Python代碼中調試和執行單元測試和集成測試的技巧,以確保您的代碼可以投入生產。學習旅程的最后一段為您提供了版本管理、實時代碼管理和智能代碼完成的基本工具。 在閱讀和使用這本書之后,您將熟練地編寫干凈的Python代碼,并成功地將這些原則應用到您自己的Python項目中。
目錄:
作者:
Sunil Kapil在過去十年一直從事軟件行業,用Python和其他幾種語言編寫產品代碼。 他曾是一名軟件工程師,主要從事網絡和移動服務的后端工作。他開發、部署并維護了數百萬用戶喜愛和使用的從小型到大型的生產項目。他與世界各地知名軟件公司的大小團隊在不同的專業環境中完成了這些項目。他也是開源的熱情倡導者,并不斷為Zulip Chat和Black等項目貢獻力量。Sunil經常在各種會議上發表關于Python的演講。