Andrew Gordon Wilson,紐約大學Courant數學科學研究所和數據科學中心助理教授,曾擔任AAAI 2018、AISTATS 2018、UAI 2018、NeurIPS 2018、AISTATS 2019、ICML 2019、UAI 2019、NeurIPS 2019、AAAI 2020、ICLR 2020的區域主席/SPC以及ICML 2019、2020年EXO主席。 個人主頁://cims.nyu.edu/~andrewgw/
貝葉斯深度學習與概率模型構建
貝葉斯方法的關鍵區別屬性是間隔化,而不是使用單一的權重設置。貝葉斯間隔化尤其可以提高現代深度神經網絡的準確性和標度,這些數據通常不充分指定,并可以代表許多引人注目但不同的解決方案。研究表明,深層的綜合系統提供了一種有效的近似貝葉斯間隔化機制,并提出了一種相關的方法,在沒有顯著開銷的情況下,通過在吸引 basins 內間隔化來進一步改進預測分布。我們還研究了神經網絡權值的模糊分布所隱含的先驗函數,從概率的角度解釋了這些模型的泛化特性。從這個角度出發,我們解釋了一些神秘而又不同于神經網絡泛化的結果,比如用隨機標簽擬合圖像的能力,并表明這些結果可以用高斯過程重新得到。我們還表明貝葉斯平均模型減輕了雙下降,從而提高了靈活性,提高了單調性能。最后,我們提供了一個貝葉斯角度的調溫校正預測分布。
視頻地址:
許多ML任務與信號處理有共同的實際目標和理論基礎(例如,光譜和核方法、微分方程系統、順序采樣技術和控制理論)。信號處理方法是ML許多子領域中不可分割的一部分,例如,強化學習,哈密頓蒙特卡洛,高斯過程(GP)模型,貝葉斯優化,神經ODEs /SDEs。
本教程旨在涵蓋與離散時間和連續時間信號處理方法相聯系的機器學習方面。重點介紹了隨機微分方程(SDEs)、狀態空間模型和高斯過程模型的遞推估計(貝葉斯濾波和平滑)。目標是介紹基本原則之間的直接聯系信號處理和機器學習, (2) 提供一個直觀的實踐理解隨機微分方程都是關于什么, (3) 展示了這些方法在加速學習的真正好處,提高推理,模型建立,演示和實際應用例子。這將展示ML如何利用現有理論來改進和加速研究,并為從事這些方法交叉工作的ICML社區成員提供統一的概述。
摘要
一個綜合的人工智能系統不僅需要用不同的感官(如視覺和聽覺)感知環境,還需要推斷世界的條件(甚至因果)關系和相應的不確定性。在過去的十年里,我們看到了許多感知任務的重大進展,比如視覺對象識別和使用深度學習模型的語音識別。然而,對于更高層次的推理,具有貝葉斯特性的概率圖模型仍然更加強大和靈活。近年來,貝葉斯深度學習作為一種將深度學習與貝葉斯模型緊密結合的統一的概率框架出現了。在這個總體框架中,利用深度學習對文本或圖像的感知可以提高更高層次推理的性能,推理過程的反饋也可以增強文本或圖像的感知。本文對貝葉斯深度學習進行了全面的介紹,并對其在推薦系統、主題模型、控制等方面的最新應用進行了綜述。此外,我們還討論了貝葉斯深度學習與其他相關課題如神經網絡的貝葉斯處理之間的關系和區別。
介紹
在過去的十年中,深度學習在許多流行的感知任務中取得了顯著的成功,包括視覺對象識別、文本理解和語音識別。這些任務對應于人工智能(AI)系統的看、讀、聽能力,它們無疑是人工智能有效感知環境所必不可少的。然而,要建立一個實用的、全面的人工智能系統,僅僅有感知能力是遠遠不夠的。首先,它應該具備思維能力。
一個典型的例子是醫學診斷,它遠遠超出了簡單的感知:除了看到可見的癥狀(或CT上的醫學圖像)和聽到患者的描述,醫生還必須尋找所有癥狀之間的關系,最好推斷出它們的病因。只有在那之后,醫生才能給病人提供醫療建議。在這個例子中,雖然視覺和聽覺的能力讓醫生能夠從病人那里獲得信息,但醫生的思維能力才是關鍵。具體來說,這里的思維能力包括識別條件依賴、因果推理、邏輯演繹、處理不確定性等,顯然超出了傳統深度學習方法的能力。幸運的是,另一種機器學習范式,概率圖形模型(PGM),在概率或因果推理和處理不確定性方面表現出色。問題在于,PGM在感知任務上不如深度學習模型好,而感知任務通常涉及大規模和高維信號(如圖像和視頻)。為了解決這個問題,將深度學習和PGM統一到一個有原則的概率框架中是一個自然的選擇,在本文中我們稱之為貝葉斯深度學習(BDL)。 在上面的例子中,感知任務包括感知病人的癥狀(例如,通過看到醫學圖像),而推理任務包括處理條件依賴性、因果推理、邏輯推理和不確定性。通過貝葉斯深度學習中有原則的整合,將感知任務和推理任務視為一個整體,可以相互借鑒。具體來說,能夠看到醫學圖像有助于醫生的診斷和推斷。另一方面,診斷和推斷反過來有助于理解醫學圖像。假設醫生可能不確定醫學圖像中的黑點是什么,但如果她能夠推斷出癥狀和疾病的病因,就可以幫助她更好地判斷黑點是不是腫瘤。 再以推薦系統為例。一個高精度的推薦系統需要(1)深入了解條目內容(如文檔和電影中的內容),(2)仔細分析用戶檔案/偏好,(3)正確評價用戶之間的相似度。深度學習的能力有效地處理密集的高維數據,如電影內容擅長第一子任務,而PGM專攻建模條件用戶之間的依賴關系,項目和評分(參見圖7為例,u, v,和R是用戶潛在的向量,項目潛在的向量,和評級,分別)擅長其他兩個。因此,將兩者統一在一個統一的概率原則框架中,可以使我們在兩個世界中都得到最好的結果。這種集成還帶來了額外的好處,可以優雅地處理推薦過程中的不確定性。更重要的是,我們還可以推導出具體模型的貝葉斯處理方法,從而得到更具有魯棒性的預測。
作為第三個例子,考慮根據從攝像機接收到的實時視頻流來控制一個復雜的動態系統。該問題可以轉化為迭代執行兩項任務:對原始圖像的感知和基于動態模型的控制。處理原始圖像的感知任務可以通過深度學習來處理,而控制任務通常需要更復雜的模型,如隱馬爾科夫模型和卡爾曼濾波器。由控制模型選擇的動作可以依次影響接收的視頻流,從而完成反饋回路。為了在感知任務和控制任務之間實現有效的迭代過程,我們需要信息在它們之間來回流動。感知組件將是控制組件估計其狀態的基礎,而帶有動態模型的控制組件將能夠預測未來的軌跡(圖像)。因此,貝葉斯深度學習是解決這一問題的合適選擇。值得注意的是,與推薦系統的例子類似,來自原始圖像的噪聲和控制過程中的不確定性都可以在這樣的概率框架下自然地處理。 以上例子說明了BDL作為一種統一深度學習和PGM的原則方式的主要優勢:感知任務與推理任務之間的信息交換、對高維數據的條件依賴以及對不確定性的有效建模。關于不確定性,值得注意的是,當BDL應用于復雜任務時,需要考慮三種參數不確定性:
通過使用分布代替點估計來表示未知參數,BDL提供了一個很有前途的框架,以統一的方式處理這三種不確定性。值得注意的是,第三種不確定性只能在BDL這樣的統一框架下處理;分別訓練感知部分和任務特定部分相當于假設它們之間交換信息時沒有不確定性。注意,神經網絡通常是過參數化的,因此在有效處理如此大的參數空間中的不確定性時提出了額外的挑戰。另一方面,圖形模型往往更簡潔,參數空間更小,提供了更好的可解釋性。
除了上述優點之外,BDL內建的隱式正則化還帶來了另一個好處。通過在隱藏單元、定義神經網絡的參數或指定條件依賴性的模型參數上施加先驗,BDL可以在一定程度上避免過擬合,尤其是在數據不足的情況下。通常,BDL模型由兩個組件組成,一個是感知組件,它是某種類型神經網絡的貝葉斯公式,另一個是任務特定組件,使用PGM描述不同隱藏或觀察變量之間的關系。正則化對它們都很重要。神經網絡通常過度參數化,因此需要適當地正則化。正則化技術如權值衰減和丟失被證明是有效地改善神經網絡的性能,他們都有貝葉斯解釋。在任務特定組件方面,專家知識或先驗信息作為一種正規化,可以在數據缺乏時通過施加先驗來指導模型。 在將BDL應用于實際任務時,也存在一些挑戰。(1)首先,設計一個具有合理時間復雜度的高效的神經網絡貝葉斯公式并非易事。這一行是由[42,72,80]開創的,但是由于缺乏可伸縮性,它沒有被廣泛采用。幸運的是,這個方向的一些最新進展似乎為貝葉斯神經網絡的實際應用提供了一些啟示。(2)第二個挑戰是如何確保感知組件和任務特定組件之間有效的信息交換。理想情況下,一階和二階信息(例如,平均值和方差)應該能夠在兩個組件之間來回流動。一種自然的方法是將感知組件表示為PGM,并將其與特定任務的PGM無縫連接,如[24,118,121]中所做的那樣。 本綜述提供了對BDL的全面概述,以及各種應用程序的具體模型。綜述的其余部分組織如下:在第2節中,我們將回顧一些基本的深度學習模型。第3節介紹PGM的主要概念和技術。這兩部分作為BDL的基礎,下一節第4節將演示統一BDL框架的基本原理,并詳細說明實現其感知組件和特定于任務的組件的各種選擇。第5節回顧了應用于不同領域的BDL模型,如推薦系統、主題模型和控制,分別展示了BDL在監督學習、非監督學習和一般表示學習中的工作方式。第6部分討論了未來的研究問題,并對全文進行了總結。
結論和未來工作
BDL致力于將PGM和NN的優點有機地整合在一個原則概率框架中。在這項綜述中,我們確定了這種趨勢,并回顧了最近的工作。BDL模型由感知組件和任務特定組件組成;因此,我們分別描述了過去幾年開發的兩個組件的不同實例,并詳細討論了不同的變體。為了學習BDL中的參數,人們提出了從塊坐標下降、貝葉斯條件密度濾波、隨機梯度恒溫器到隨機梯度變分貝葉斯等多種類型的算法。 BDL從PGM的成功和最近在深度學習方面有前景的進展中獲得了靈感和人氣。由于許多現實世界的任務既涉及高維信號(如圖像和視頻)的有效感知,又涉及隨機變量的概率推理,因此BDL成為利用神經網絡的感知能力和PGM的(條件和因果)推理能力的自然選擇。在過去的幾年中,BDL在推薦系統、主題模型、隨機最優控制、計算機視覺、自然語言處理、醫療保健等各個領域都有成功的應用。在未來,我們不僅可以對現有的應用進行更深入的研究,還可以對更復雜的任務進行探索。此外,最近在高效BNN (BDL的感知組件)方面的進展也為進一步提高BDL的可擴展性奠定了基礎。
【導讀】紐約大學的Andrew Gordon Wilson和Pavel Izmailov在論文中從概率角度的泛化性對貝葉斯深度學習進行了探討。貝葉斯方法的關鍵區別在于它是基于邊緣化,而不是基于最優化的,這為它帶來了許多優勢。
貝葉斯方法的關鍵區別是邊緣化,而不是使用單一的權重設置。貝葉斯邊緣化可以特別提高現代深度神經網絡的準確性和校準,這是典型的不由數據完全確定,可以代表許多令人信服的但不同的解決方案。我們證明了深度集成為近似貝葉斯邊緣化提供了一種有效的機制,并提出了一種相關的方法,通過在沒有顯著開銷的情況下,在吸引域邊緣化來進一步改進預測分布。我們還研究了神經網絡權值的模糊分布所隱含的先驗函數,從概率的角度解釋了這些模型的泛化性質。從這個角度出發,我們解釋了那些對于神經網絡泛化來說神秘而獨特的結果,比如用隨機標簽來擬合圖像的能力,并證明了這些結果可以用高斯過程來重現。最后,我們提供了校正預測分布的貝葉斯觀點。
報告題目: Bayesian Deep Learning
報告摘要: 深度神經網絡是連接主義系統,通過它通過學習例子來完成任務,而不需要事先了解這些任務。它們可以很容易地擴展到數百萬個數據點,并且可以通過隨機梯度下降進行優化。貝葉斯方法可以用于學習神經網絡權重的概率分布。貝葉斯深度學習與貝葉斯深度學習(如何對DNNs進行貝葉斯推理?如何學習分層結構的貝葉斯模型?),本篇報告給出一定解釋。
嘉賓介紹: 朱軍博士是清華大學計算機系長聘副教授、智能技術與系統國家重點實驗室副主任、卡內基梅隆大學兼職教授。2013年,入選IEEE Intelligent Systems的“人工智能10大新星”(AI’s 10 to Watch)。他主要從事機器學習研究,在國際重要期刊與會議發表學術論文80余篇。擔任國際期刊IEEE TPAMI和Artificial Intelligence的編委、國際會議ICML 2014地區聯合主席、以及ICML、NIPS等國際會議的領域主席。
課程名稱: Deep Learning and Bayesian Methods
課程介紹: 在Deep|Bayes暑期學校,我們將討論如何將Bayes方法與Deep Learning相結合,并在機器學習應用程序中帶來更好的結果。 最近的研究證明,貝葉斯方法的使用可以通過各種方式帶來好處。 學校參與者將學習對理解當前機器學習研究至關重要的方法和技術。 他們還將具有使用概率模型來構建神經生成和判別模型的動手經驗,學習神經網絡的現代隨機優化方法和正則化技術,并掌握推理神經網絡及其權重不確定性的方法,預測。
部分邀請嘉賓: Maurizio Filippone,AXA計算統計主席,EURECOM副教授
Novi Quadrianto,薩塞克斯大學助理教授
課程大綱: