亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

最近計算機視覺三大頂會之一CVPR2020接收結果已經公布,一共有1470篇論文被接收,接收率為22%,相比去年降低3個百分點,競爭越來越激烈。專知在這里整理來自Twitter、arXiv、知乎放出來的30篇最新CVPR論文,方便大家搶先閱覽!這些論文包括視覺常識、?視頻超分處理、圖像分類、目標跟蹤等。

付費5元查看完整內容

相關內容

CVPR is the premier annual computer vision event comprising the main conference and several co-located workshops and short courses. With its high quality and low cost, it provides an exceptional value for students, academics and industry researchers. CVPR 2020 will take place at The Washington State Convention Center in Seattle, WA, from June 16 to June 20, 2020. //cvpr2020.thecvf.com/

【導讀】作為計算機視覺領域的三大國際頂會之一,IEEE國際計算機視覺與模式識別會議 CVPR 每年都會吸引全球領域眾多專業人士參與。由于受COVID-19疫情影響,原定于6月16日至20日在華盛頓州西雅圖舉行的CVPR 2020將全部改為線上舉行。今年的CVPR有6656篇有效投稿,最終有1470篇論文被接收,接收率為22%左右。之前小編為大家整理過CVPR 2020 GNN 相關論文,這周小編繼續為大家整理了五篇CVPR 2020 圖神經網絡(GNN)相關論文,供大家參考——行為識別、少樣本學習、仿射跳躍連接、多層GCN、3D視頻目標檢測。

CVPR2020SGNN、CVPR2020GNN_Part2、CVPR2020GNN_Part1、WWW2020GNN_Part1、AAAI2020GNN、ACMMM2019GNN、CIKM2019GNN、ICLR2020GNN、EMNLP2019GNN、ICCV2019GNN_Part2、ICCV2019GNN_Part1、NIPS2019GNN、IJCAI2019GNN_Part1、IJCAI2019GNN_Part2、KDD2019GNN、ACL2019GNN、CVPR2019GNN

1. Disentangling and Unifying Graph Convolutions for Skeleton-Based Action Recognition

作者:Ziyu Liu, Hongwen Zhang, Zhenghao Chen, Zhiyong Wang, Wanli Ouyang

摘要:基于骨架的動作識別算法廣泛使用時空圖對人體動作動態進行建模。為了從這些圖中捕獲魯棒的運動模式,長范圍和多尺度的上下文聚合與時空依賴建模是一個強大的特征提取器的關鍵方面。然而,現有的方法在實現(1)多尺度算子下的無偏差長范圍聯合關系建模和(2)用于捕捉復雜時空依賴的通暢的跨時空信息流方面存在局限性。在這項工作中,我們提出了(1)一種簡單的分解(disentangle)多尺度圖卷積的方法和(2)一種統一的時空圖卷積算子G3D。所提出的多尺度聚合方法理清了不同鄰域中節點對于有效的遠程建模的重要性。所提出的G3D模塊利用密集的跨時空邊作為跳過連接(skip connections),用于在時空圖中直接傳播信息。通過耦合上述提議,我們開發了一個名為MS-G3D的強大的特征提取器,在此基礎上,我們的模型在三個大規模數據集NTU RGB+D60,NTU RGB+D120和Kinetics Skeleton 400上的性能優于以前的最先進方法。

網址: //arxiv.org/pdf/2003.14111.pdf

代碼鏈接: github.com/kenziyuliu/ms-g3d

2. DPGN: Distribution Propagation Graph Network for Few-shot Learning

作者:Ling Yang, Liangliang Li, Zilun Zhang, Xinyu Zhou, Erjin Zhou, Yu Liu

摘要:大多數基于圖網絡的元學習方法都是為實例的instance-level關系進行建模。我們進一步擴展了此思想,以1-vs-N的方式將一個實例與所有其他實例的分布級關系明確建模。我們提出了一種新的少樣本學習方法--分布傳播圖網絡(DPGN)。它既表達了每個少樣本學習任務中的分布層次關系,又表達了實例層次關系。為了將所有實例的分布層關系和實例層關系結合起來,我們構造了一個由點圖和分布圖組成的對偶全圖網絡,其中每個節點代表一個實例。DPGN采用雙圖結構,在更新時間內將標簽信息從帶標簽的實例傳播到未帶標簽的實例。在少樣本學習的大量基準實驗中,DPGN在監督設置下以5%~12%和在半監督設置下以7%~13%的優勢大大超過了最新的結果。

網址:

代碼鏈接:

3. Geometrically Principled Connections in Graph Neural Networks

作者:Shunwang Gong, Mehdi Bahri, Michael M. Bronstein, Stefanos Zafeiriou

摘要:圖卷積操作為以前認為遙不可及的各種圖形和網格處理任務帶來了深度學習的優勢。隨著他們的持續成功,人們希望設計更強大的體系結構,這通常是將現有的深度學習技術應用于非歐幾里得數據。在這篇文章中,我們認為幾何應該仍然是幾何深度學習這一新興領域創新的主要驅動力。我們將圖神經網絡與廣泛成功的計算機圖形和數據近似模型(徑向基函數(RBF))相關聯。我們推測,與RBF一樣,圖卷積層將從向功能強大的卷積核中添加簡單函數中受益。我們引入了仿射跳躍連接 (affine skip connections),這是一種通過將全連接層與任意圖卷積算子相結合而形成的一種新的構建塊。通過實驗證明了我們的技術的有效性,并表明性能的提高是參數數量增加的結果。采用仿射跳躍連接的算子在形狀重建、密集形狀對應和圖形分類等每一項任務上的表現都明顯優于它們的基本性能。我們希望我們簡單有效的方法將成為堅實的基準,并有助于簡化圖神經網絡未來的研究。

網址:

4. L^2-GCN: Layer-Wise and Learned Efficient Training of Graph Convolutional Networks

作者:Yuning You, Tianlong Chen, Zhangyang Wang, Yang Shen

摘要:圖卷積網絡(GCN)在許多應用中越來越受歡迎,但在大型圖形數據集上的訓練仍然是出了名的困難。它們需要遞歸地計算鄰居的節點表示。當前的GCN訓練算法要么存在隨層數呈指數增長的高計算成本,要么存在加載整個圖和節點嵌入的高內存使用率問題。本文提出了一種新的高效的GCN分層訓練框架(L-GCN),該框架將訓練過程中的特征聚合和特征變換分離開來,從而大大降低了時間和存儲復雜度。我們在圖同構框架下給出了L-GCN的理論分析,在溫和的條件下,與代價更高的傳統訓練算法相比L-GCN可以產生同樣強大的GCN。我們進一步提出了L2-GCN,它為每一層學習一個控制器,該控制器可以自動調整L-GCN中每一層的訓練周期。實驗表明,L-GCN比現有技術快至少一個數量級,內存使用量的一致性不依賴于數據集的大小,同時保持了還不錯的預測性能。通過學習控制器,L2-GCN可以將訓練時間進一步減少一半。

網址:

代碼鏈接:

補充材料:

5. LiDAR-based Online 3D Video Object Detection with Graph-based Message Passing and Spatiotemporal Transformer Attention

作者:Junbo Yin, Jianbing Shen, Chenye Guan, Dingfu Zhou, Ruigang Yang

摘要:現有的基于LiDAR的3D目標檢測算法通常側重于單幀檢測,而忽略了連續點云幀中的時空信息。本文提出了一種基于點云序列的端到端在線3D視頻對象檢測器。該模型包括空間特征編碼部分和時空特征聚合部分。在前一個組件中,我們提出了一種新的柱狀消息傳遞網絡(Pillar Message Passing Network,PMPNet)來對每個離散點云幀進行編碼。它通過迭代信息傳遞的方式自適應地從相鄰節點收集柱節點的信息,有效地擴大了柱節點特征的感受野。在后一組件中,我們提出了一種注意力時空轉換GRU(AST-GRU)來聚合時空信息,通過注意力記憶門控機制增強了傳統的ConvGRU。AST-GRU包含一個空間Transformer Attention(STA)模塊和一個時間Transformer Attention(TTA)模塊,分別用于強調前景對象和對齊動態對象。實驗結果表明,所提出的3D視頻目標檢測器在大規模的nuScenes基準測試中達到了最先進的性能。

網址:

代碼鏈接:

付費5元查看完整內容

【導讀】計算機視覺頂會CVPR 2020在不久前公布了論文接收列表。本屆CVPR共收到了6656篇有效投稿,接收1470篇,其接受率在逐年下降,今年接受率僅為22%。幾周前專知小編整理了CVPR 2020 圖神經網絡(GNN)相關的比較有意思的值得閱讀的,這期小編繼續為大家奉上CVPR 2020五篇GNN相關論文供參考——視頻文本檢索、人體解析、圖像描述生成、人臉重構、Human-Object Interaction。

CVPR2020GNN_Part1、WWW2020GNN_Part1、AAAI2020GNN、ACMMM2019GNN、CIKM2019GNN、ICLR2020GNN、EMNLP2019GNN、ICCV2019GNN_Part2、ICCV2019GNN_Part1、NIPS2019GNN、IJCAI2019GNN_Part1、IJCAI2019GNN_Part2、KDD2019GNN、ACL2019GNN、CVPR2019GNN、ICML2019GNN

  1. Fine-grained Video-Text Retrieval with Hierarchical Graph Reasoning

作者:Shizhe Chen, Yida Zhao, Qin Jin and Qi Wu

摘要:隨著視頻在網絡上的迅速涌現,視頻和文本之間的跨模態檢索越來越受到人們的關注。目前解決這一問題的主流方法是學習聯合嵌入空間來度量跨模態相似性。然而,簡單的聯合嵌入不足以表示復雜的視覺和文本細節,例如場景、對象、動作及他們的組成。為了提高細粒度的視頻文本檢索,我們提出了一種分層圖推理(HGR)模型,將視頻文本匹配分解為全局到局部層次。具體地說,該模型將文本分解成層次化的語義圖,包括事件、動作、實體這三個層次和這些層次之間的關系。利用基于屬性的圖推理生成層次化的文本嵌入,以指導多樣化、層次化的視頻表示學習。HGR模型聚合來自不同視頻-文本級別的匹配,以捕捉全局和局部細節。在三個視頻文本數據集上的實驗結果表明了該模型的優越性。這種分層分解還可以更好地跨數據集進行泛化,并提高區分細粒度語義差異的能力。

網址://arxiv.org/abs/2003.00392

  1. Hierarchical Human Parsing with Typed Part-Relation Reasoning

作者:Wenguan Wang, Hailong Zhu, Jifeng Dai, Yanwei Pang, Jianbing Shen and Ling Shao

摘要:人體解析(Human parsing)是為了像素級的人類語義理解。由于人體是具有層次結構的,因此如何對人體結構進行建模是這個任務的中心主題。圍繞這一點,我們試圖同時探索深度圖網絡的表示能力和層次化的人類結構。在本文中,我們有以下兩個貢獻。首先,首次用三個不同的關系網絡完整而精確地描述了分解、組合和依賴這三種部件關系。這與以前的解析方式形成了鮮明的對比,之前的解析器只關注關系的一部分,并采用類型不可知(type-agnostic)的關系建模策略。通過在關系網絡中顯式地施加參數來滿足不同關系的具體特性,可以捕捉到更具表現力的關系信息。其次,以前的解析器在很大程度上忽略了循環的人類層次結構上的近似算法的需求,而我們則通過將具有邊類型的通用信息傳遞網絡與卷積網絡同化來解決迭代推理過程。通過這些努力,我們的解析器為更復雜、更靈活的人際關系推理模式奠定了基礎。在五個數據集上的綜合實驗表明,我們的解析器在每個數據集上都具有最好的表現。

網址:

  1. Say As You Wish: Fine-grained Control of Image Caption Generation with Abstract Scene Graphs

作者:Shizhe Chen, Qin Jin, Peng Wang and Qi Wu

摘要:人類能夠隨心所欲地用粗略到精細的細節來描述圖像內容。然而,大多數圖像描述生成模型都是忽略意圖(intention-agnostic)的,不能根據不同的用戶意圖主動生成不同的描述。在這項工作中,我們提出了抽象場景圖(ASG)結構來在細粒度層次上表示用戶意圖,并控制生成的描述應該是什么和有多詳細。ASG是一個由三種類型的抽象節點(對象、屬性、關系)組成的有向圖,這些節點來自于圖像,沒有任何具體的語義標簽。因此,啊他們通過手動或自動生成都很容易獲得。在ASG的基礎上,我們提出了一種新穎的ASG2圖像描述生成模型,該模型能夠識別用戶在圖中的意圖和語義,從而根據圖的結構生成想要的字幕。與在VisualGenome和MSCOCO數據集上的其它的基線模型相比,我們的模型在ASG上具有更好的可控性條件。它還通過自動采樣不同的ASG作為控制信號,顯著提高了caption的多樣性。

網址:

  1. Towards High-Fidelity 3D Face Reconstruction from In-the-Wild Images Using Graph Convolutional Networks

作者:Jiangke Lin, Yi Yuan, Tianjia Shao and Kun Zhou

摘要:基于三維形變模型(3DMM)的方法在從單視圖圖像中恢復三維人臉形狀方面取得了很大的成功。然而,用這種方法恢復的面部紋理缺乏像輸入圖像中表現出的逼真度。最近的工作采用生成網絡來恢復高質量的面部紋理,這些網絡是從一個大規模的高分辨率臉部紋理UV圖數據庫中訓練出來的,這些數據庫很難準備的,也不能公開使用。本文介紹了一種在無約束條件下捕獲(in-the-wild)的單視圖像中重建具有高保真紋理的三維人臉形狀的方法,該方法不需要獲取大規模的人臉紋理數據庫。為此,我們提出使用圖卷積網絡來重建網格頂點的細節顏色來代替重建UV地圖。實驗表明,我們的方法可以產生高質量的結果,并且在定性和定量比較方面都優于最先進的方法。

網址:

  1. VSGNet: Spatial Attention Network for Detecting Human Object Interactions Using Graph Convolutions

作者:Oytun Ulutan, A S M Iftekhar and B. S. Manjunath

摘要:全面的視覺理解要求檢測框架能夠在單獨分析物體的同時有效地學習和利用物體交互。這是人類-物體交互(Human-Object Interaction,HOI)任務的主要目標。特別是,物體之間的相對空間推理和結構聯系是分析交互的基本線索,文中提出的視覺-空間-圖網絡(VSGNet)體系結構可以解決這一問題。VSGNet從人類-物體對中提取視覺特征,利用人類-物體對的空間構型對特征進行細化,并通過圖卷積利用人類-物體對之間的結構聯系。我們使用COCO(V-COCO)和HICO-Det數據集中的動詞對VSGNet的性能進行了全面評估。實驗結果表明,VSGNet在V-COCO和HICO-DET中的性能分別比現有解決方案高出8%或4MAP和16%或3MAP。

網址:

代碼鏈接:

付費5元查看完整內容

 今天,計算機視覺三大頂會之一CVPR2020接收結果已經公布,一共有1470篇論文被接收,接收率為22%,相比去年降低3個百分點,競爭越來越激烈。

計算機視覺頂會CVPR2020官方今日發布接收論文列表(編號): //cvpr2020.thecvf.com/sites/default/files/2020-02/accepted_list.txt

1.GhostNet: More Features from Cheap Operations(超越Mobilenet v3的架構) 論文鏈接: 模型(在ARM CPU上的表現驚人):

We beat other SOTA lightweight CNNs such as MobileNetV3 and FBNet.

  1. AdderNet: Do We Really Need Multiplications in Deep Learning? (加法神經網絡) 在大規模神經網絡和數據集上取得了非常好的表現 論文鏈接: 論文鏈接:

  2. Frequency Domain Compact 3D Convolutional Neural Networks (3dCNN壓縮) 論文鏈接: 開源代碼:

  3. A Semi-Supervised Assessor of Neural Architectures (神經網絡精度預測器 NAS)

  4. Hit-Detector: Hierarchical Trinity Architecture Search for Object Detection(NAS 檢測) backbone-neck-head一起搜索, 三位一體

  5. CARS: Contunuous Evolution for Efficient Neural Architecture Search (連續進化的NAS) 高效,具備可微和進化的多重優勢 論文鏈接:

  6. On Positive-Unlabeled Classification in GAN (PU+GAN)

  7. Learning multiview 3D point cloud registration(3D點云) 論文鏈接:arxiv.org/abs/2001.05119

  8. Multi-Modal Domain Adaptation for Fine-Grained Action Recognition(細粒度動作識別) 論文鏈接:arxiv.org/abs/2001.09691

  9. Action Modifiers:Learning from Adverbs in Instructional Video 論文鏈接:arxiv.org/abs/1912.06617

  10. PolarMask: Single Shot Instance Segmentation with Polar Representation(實例分割建模) 論文鏈接:arxiv.org/abs/1909.13226 論文解讀: 開源代碼:

  11. Rethinking Performance Estimation in Neural Architecture Search(NAS) 由于block wise neural architecture search中真正消耗時間的是performance estimation部分,本文針對 block wise的NAS找到了最優參數,速度更快,且相關度更高。

  12. Distribution Aware Coordinate Representation for Human Pose Estimation(人體姿態估計)

論文鏈接:arxiv.org/abs/1910.06278 Github: 作者團隊主頁:

付費5元查看完整內容
北京阿比特科技有限公司