We give an efficient algorithm that transforms any bounded degree expander graph into another that achieves almost optimal (namely, near-quadratic, $d \leq 1/\lambda^{2+o(1)}$) trade-off between (any desired) spectral expansion $\lambda$ and degree $d$. Furthermore, the algorithm is local: every vertex can compute its new neighbors as a subset of its original neighborhood of radius $O(\log(1/\lambda))$. The optimal quadratic trade-off is known as the Ramanujan bound, so our construction gives almost Ramanujan expanders from arbitrary expanders. The locality of the transformation preserves structural properties of the original graph, and thus has many consequences. Applied to Cayley graphs, our transformation shows that any expanding finite group has almost Ramanujan expanding generators. Similarly, one can obtain almost optimal explicit constructions of quantum expanders, dimension expanders, monotone expanders, etc., from existing (suboptimal) constructions of such objects. Another consequence is a "derandomized" random walk on the original (suboptimal) expander with almost optimal convergence rate. Our transformation also applies when the degree is not bounded or the expansion is not constant. We obtain our results by a generalization of Ta-Shma's technique in his breakthrough paper [STOC 2017], used to obtain explicit almost optimal binary codes. Specifically, our spectral amplification extends Ta-Shma's analysis of bias amplification from scalars to matrices of arbitrary dimension in a very natural way. Curiously, while Ta-Shma's explicit bias amplification derandomizes a well-known probabilistic argument (underlying the Gilbert--Varshamov bound), there seems to be no known probabilistic (or other existential) way of achieving our explicit ("high-dimensional") spectral amplification.
Morse and Ingard give a coupled system of time-harmonic equations for the temperature and pressure of an excited gas. These equations form a critical aspect of modeling trace gas sensors. Like other wave propagation problems, the computational problem must be closed with suitable far-field boundary conditions. Working in a scattered-field formulation, we adapt a nonlocal boundary condition proposed earlier for the Helmholtz equation to this coupled system. This boundary condition uses a Green's formula for the true solution on the boundary, giving rise to a nonlocal perturbation of standard transmission boundary conditions. However, the boundary condition is exact and so Galerkin discretization of the resulting problem converges to the restriction of the exact solution to the computational domain. Numerical results demonstrate that accuracy can be obtained on relatively coarse meshes on small computational domains, and the resulting algebraic systems may be solved by GMRES using the local part of the operator as an effective preconditioner.
In the vertex connectivity problem, given an undirected $n$-vertex $m$-edge graph $G$, we need to compute the minimum number of vertices that can disconnect $G$ after removing them. This problem is one of the most well-studied graph problems. From 2019, a new line of work [Nanongkai et al.~STOC'19;SODA'20;STOC'21] has used randomized techniques to break the quadratic-time barrier and, very recently, culminated in an almost-linear time algorithm via the recently announced maxflow algorithm by Chen et al. In contrast, all known deterministic algorithms are much slower. The fastest algorithm [Gabow FOCS'00] takes $O(m(n+\min\{c^{5/2},cn^{3/4}\}))$ time where $c$ is the vertex connectivity. It remains open whether there exists a subquadratic-time deterministic algorithm for any constant $c>3$. In this paper, we give the first deterministic almost-linear time vertex connectivity algorithm for all constants $c$. Our running time is $m^{1+o(1)}2^{O(c^{2})}$ time, which is almost-linear for all $c=o(\sqrt{\log n})$. This is the first deterministic algorithm that breaks the $O(n^{2})$-time bound on sparse graphs where $m=O(n)$, which is known for more than 50 years ago [Kleitman'69]. Towards our result, we give a new reduction framework to vertex expanders which in turn exploits our new almost-linear time construction of mimicking network for vertex connectivity. The previous construction by Kratsch and Wahlstr\"{o}m [FOCS'12] requires large polynomial time and is randomized.
We develop a general method to study the Fisher information distance in central limit theorem for nonlinear statistics. We first construct completely new representations for the score function. We then use these representations to derive quantitative estimates for the Fisher information distance. To illustrate the applicability of our approach, explicit rates of Fisher information convergence for quadratic forms and the functions of sample means are provided. For the sums of independent random variables, we obtain the Fisher information bounds without requiring the finiteness of Poincar\'e constant. Our method can also be used to bound the Fisher information distance in non-central limit theorems.
Elimination algorithms for bandit identification, which prune the plausible correct answers sequentially until only one remains, are computationally convenient since they reduce the problem size over time. However, existing elimination strategies are often not fully adaptive (they update their sampling rule infrequently) and are not easy to extend to combinatorial settings, where the set of answers is exponentially large in the problem dimension. On the other hand, most existing fully-adaptive strategies to tackle general identification problems are computationally demanding since they repeatedly test the correctness of every answer, without ever reducing the problem size. We show that adaptive methods can be modified to use elimination in both their stopping and sampling rules, hence obtaining the best of these two worlds: the algorithms (1) remain fully adaptive, (2) suffer a sample complexity that is never worse of their non-elimination counterpart, and (3) provably eliminate certain wrong answers early. We confirm these benefits experimentally, where elimination improves significantly the computational complexity of adaptive methods on common tasks like best-arm identification in linear bandits.
We present a simple technique for semantic, open logical relations arguments about languages with recursive types, which, as we show, follows from a principled foundation in categorical semantics. We demonstrate how it can be used to give a very straightforward proof of correctness of practical forward- and reverse-mode dual numbers style automatic differentiation (AD) on ML-family languages. The key idea is to combine it with a suitable open logical relations technique for reasoning about differentiable partial functions (a suitable lifting of the partiality monad to logical relations), which we introduce.
We show sublinear-time algorithms for Max Cut and Max E2Lin$(q)$ on expanders in the adjacency list model that distinguishes instances with the optimal value more than $1-\varepsilon$ from those with the optimal value less than $1-\rho$ for $\rho \gg \varepsilon$. The time complexities for Max Cut and Max $2$Lin$(q)$ are $\widetilde{O}(\frac{1}{\phi^2\rho} \cdot m^{1/2+O(\varepsilon/(\phi^2\rho))})$ and $\widetilde{O}(\mathrm{poly}(\frac{q}{\phi\rho})\cdot {(mq)}^{1/2+O(q^6\varepsilon/\phi^2\rho^2)})$, respectively, where $m$ is the number of edges in the underlying graph and $\phi$ is its conductance. Then, we show a sublinear-time algorithm for Unique Label Cover on expanders with $\phi \gg \epsilon$ in the bounded-degree model. The time complexity of our algorithm is $\widetilde{O}_d(2^{q^{O(1)}\cdot\phi^{1/q}\cdot \varepsilon^{-1/2}}\cdot n^{1/2+q^{O(q)}\cdot \varepsilon^{4^{1.5-q}}\cdot \phi^{-2}})$, where $n$ is the number of variables. We complement these algorithmic results by showing that testing $3$-colorability requires $\Omega(n)$ queries even on expanders.
We study the MaxRes rule in the context of certifying unsatisfiability. We show that it can be exponentially more powerful than tree-like resolution, and when augmented with weakening (the system MaxResW), p-simulates tree-like resolution. In devising a lower bound technique specific to MaxRes (and not merely inheriting lower bounds from Res), we define a new proof system called the SubCubeSums proof system. This system, which p-simulates MaxResW, can be viewed as a special case of the semialgebraic Sherali-Adams proof system. In expressivity, it is the integral restriction of conical juntas studied in the contexts of communication complexity and extension complexity. We show that it is not simulated by Res. Using a proof technique qualitatively different from the lower bounds that MaxResW inherits from Res, we show that Tseitin contradictions on expander graphs are hard to refute in SubCubeSums. We also establish a lower bound technique via lifting: for formulas requiring large degree in SubCubeSums, their XOR-ification requires large size in SubCubeSums.
Motivated by a recently established result saying that within the class of bivariate Archimedean copulas standard pointwise convergence implies weak convergence of almost all conditional distributions this contribution studies the class $\mathcal{C}_{ar}^d$ of all $d$-dimensional Archimedean copulas with $d \geq 3$ and proves the afore-mentioned implication with respect to conditioning on the first $d-1$ coordinates. Several proper\-ties equivalent to pointwise convergence in $\mathcal{C}_{ar}^d$ are established and - as by-product of working with conditional distributions (Markov kernels) - alternative simple proofs for the well-known formulas for the level set masses $\mu_C(L_t)$ and the Kendall distribution function $F_K^d$ as well as a novel geometrical interpretation of the latter are provided. Viewing normalized generators $\psi$ of $d$-dimensional Archimedean copulas from the perspective of their so-called Williamson measures $\gamma$ on $(0,\infty)$ is then shown to allow not only to derive surprisingly simple expressions for $\mu_C(L_t)$ and $F_K^d$ in terms of $\gamma$ and to characterize pointwise convergence in $\mathcal{C}_{ar}^d$ by weak convergence of the Williamson measures but also to prove that regularity/singularity properties of $\gamma$ directly carry over to the corresponding copula $C_\gamma \in \mathcal{C}_{ar}^d$. These results are finally used to prove the fact that the family of all absolutely continuous and the family of all singular $d$-dimensional copulas is dense in $\mathcal{C}_{ar}^d$ and to underline that despite of their simple algebraic structure Archimedean copulas may exhibit surprisingly singular behavior in the sense of irregularity of their conditional distribution functions.
Many real-world problems can be naturally described by mathematical formulas. The task of finding formulas from a set of observed inputs and outputs is called symbolic regression. Recently, neural networks have been applied to symbolic regression, among which the transformer-based ones seem to be the most promising. After training the transformer on a large number of formulas (in the order of days), the actual inference, i.e., finding a formula for new, unseen data, is very fast (in the order of seconds). This is considerably faster than state-of-the-art evolutionary methods. The main drawback of transformers is that they generate formulas without numerical constants, which have to be optimized separately, so yielding suboptimal results. We propose a transformer-based approach called SymFormer, which predicts the formula by outputting the individual symbols and the corresponding constants simultaneously. This leads to better performance in terms of fitting the available data. In addition, the constants provided by SymFormer serve as a good starting point for subsequent tuning via gradient descent to further improve the performance. We show on a set of benchmarks that SymFormer outperforms two state-of-the-art methods while having faster inference.
Graph convolutional networks (GCNs) have been successfully applied in node classification tasks of network mining. However, most of these models based on neighborhood aggregation are usually shallow and lack the "graph pooling" mechanism, which prevents the model from obtaining adequate global information. In order to increase the receptive field, we propose a novel deep Hierarchical Graph Convolutional Network (H-GCN) for semi-supervised node classification. H-GCN first repeatedly aggregates structurally similar nodes to hyper-nodes and then refines the coarsened graph to the original to restore the representation for each node. Instead of merely aggregating one- or two-hop neighborhood information, the proposed coarsening procedure enlarges the receptive field for each node, hence more global information can be learned. Comprehensive experiments conducted on public datasets demonstrate the effectiveness of the proposed method over the state-of-art methods. Notably, our model gains substantial improvements when only a few labeled samples are provided.