亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Motivated by a recently established result saying that within the class of bivariate Archimedean copulas standard pointwise convergence implies weak convergence of almost all conditional distributions this contribution studies the class $\mathcal{C}_{ar}^d$ of all $d$-dimensional Archimedean copulas with $d \geq 3$ and proves the afore-mentioned implication with respect to conditioning on the first $d-1$ coordinates. Several proper\-ties equivalent to pointwise convergence in $\mathcal{C}_{ar}^d$ are established and - as by-product of working with conditional distributions (Markov kernels) - alternative simple proofs for the well-known formulas for the level set masses $\mu_C(L_t)$ and the Kendall distribution function $F_K^d$ as well as a novel geometrical interpretation of the latter are provided. Viewing normalized generators $\psi$ of $d$-dimensional Archimedean copulas from the perspective of their so-called Williamson measures $\gamma$ on $(0,\infty)$ is then shown to allow not only to derive surprisingly simple expressions for $\mu_C(L_t)$ and $F_K^d$ in terms of $\gamma$ and to characterize pointwise convergence in $\mathcal{C}_{ar}^d$ by weak convergence of the Williamson measures but also to prove that regularity/singularity properties of $\gamma$ directly carry over to the corresponding copula $C_\gamma \in \mathcal{C}_{ar}^d$. These results are finally used to prove the fact that the family of all absolutely continuous and the family of all singular $d$-dimensional copulas is dense in $\mathcal{C}_{ar}^d$ and to underline that despite of their simple algebraic structure Archimedean copulas may exhibit surprisingly singular behavior in the sense of irregularity of their conditional distribution functions.

相關內容

We study online convex optimization with constraints consisting of multiple functional constraints and a relatively simple constraint set, such as a Euclidean ball. As enforcing the constraints at each time step through projections is computationally challenging in general, we allow decisions to violate the functional constraints but aim to achieve a low regret and cumulative violation of the constraints over a horizon of $T$ time steps. First-order methods achieve an $\mathcal{O}(\sqrt{T})$ regret and an $\mathcal{O}(1)$ constraint violation, which is the best-known bound under the Slater's condition, but do not take into account the structural information of the problem. Furthermore, the existing algorithms and analysis are limited to Euclidean space. In this paper, we provide an \emph{instance-dependent} bound for online convex optimization with complex constraints obtained by a novel online primal-dual mirror-prox algorithm. Our instance-dependent regret is quantified by the total gradient variation $V_*(T)$ in the sequence of loss functions. The proposed algorithm works in \emph{general} normed spaces and simultaneously achieves an $\mathcal{O}(\sqrt{V_*(T)})$ regret and an $\mathcal{O}(1)$ constraint violation, which is never worse than the best-known $( \mathcal{O}(\sqrt{T}), \mathcal{O}(1) )$ result and improves over previous works that applied mirror-prox-type algorithms for this problem achieving $\mathcal{O}(T^{2/3})$ regret and constraint violation. Finally, our algorithm is computationally efficient, as it only performs mirror descent steps in each iteration instead of solving a general Lagrangian minimization problem.

We study a quantum switch that distributes maximally entangled multipartite states to sets of users. The entanglement switching process requires two steps: first, each user attempts to generate bipartite entanglement between itself and the switch; and second, the switch performs local operations and a measurement to create multipartite entanglement for a set of users. In this work, we study a simple variant of this system, wherein the switch has infinite memory and the links that connect the users to the switch are identical. Further, we assume that all quantum states, if generated successfully, have perfect fidelity and that decoherence is negligible. This problem formulation is of interest to several distributed quantum applications, while the technical aspects of this work result in new contributions within queueing theory. Via extensive use of Lyapunov functions, we derive necessary and sufficient conditions for the stability of the system and closed-form expressions for the switch capacity and the expected number of qubits in memory.

Gaussian mixtures are commonly used for modeling heavy-tailed error distributions in robust linear regression. Combining the likelihood of a multivariate robust linear regression model with a standard improper prior distribution yields an analytically intractable posterior distribution that can be sampled using a data augmentation algorithm. When the response matrix has missing entries, there are unique challenges to the application and analysis of the convergence properties of the algorithm. Conditions for geometric ergodicity are provided when the incomplete data have a "monotone" structure. In the absence of a monotone structure, an intermediate imputation step is necessary for implementing the algorithm. In this case, we provide sufficient conditions for the algorithm to be Harris ergodic. Finally, we show that, when there is a monotone structure and intermediate imputation is unnecessary, intermediate imputation slows the convergence of the underlying Monte Carlo Markov chain, while post hoc imputation does not. An R package for the data augmentation algorithm is provided.

Estimating statistical properties is fundamental in statistics and computer science. In this paper, we propose a unified quantum algorithm framework for estimating properties of discrete probability distributions, with estimating R\'enyi entropies as specific examples. In particular, given a quantum oracle that prepares an $n$-dimensional quantum state $\sum_{i=1}^{n}\sqrt{p_{i}}|i\rangle$, for $\alpha>1$ and $0<\alpha<1$, our algorithm framework estimates $\alpha$-R\'enyi entropy $H_{\alpha}(p)$ to within additive error $\epsilon$ with probability at least $2/3$ using $\widetilde{\mathcal{O}}(n^{1-\frac{1}{2\alpha}}/\epsilon + \sqrt{n}/\epsilon^{1+\frac{1}{2\alpha}})$ and $\widetilde{\mathcal{O}}(n^{\frac{1}{2\alpha}}/\epsilon^{1+\frac{1}{2\alpha}})$ queries, respectively. This improves the best known dependence in $\epsilon$ as well as the joint dependence between $n$ and $1/\epsilon$. Technically, our quantum algorithms combine quantum singular value transformation, quantum annealing, and variable-time amplitude estimation. We believe that our algorithm framework is of general interest and has wide applications.

Batch trading systems and constant function market makers (CFMMs) are two distinct market design innovations that have recently come to prominence as ways to address some of the shortcomings of decentralized trading systems. However, different deployments have chosen substantially different methods for integrating the two innovations. We show here from a minimal set of axioms describing the beneficial properties of each innovation that there is in fact only one, unique method for integrating CFMMs into batch trading schemes that preserves all the beneficial properties of both. Deployment of a batch trading schemes trading many assets simultaneously requires a reliable algorithm for approximating equilibria in Arrow-Debreu exchange markets. We study this problem when batches contain limit orders and CFMMs. Specifically, we find that CFMM design affects the asymptotic complexity of the problem, give an easily-checkable criterion to validate that a user-submitted CFMM is computationally tractable in a batch, and give a convex program that computes equilibria on batches of limit orders and CFMMs. Equivalently, this convex program computes equilibria of Arrow-Debreu exchange markets when every agent's demand response satisfies weak gross substitutability and every agent has utility for only two types of assets. This convex program has rational solutions when run on many (but not all) natural classes of widely-deployed CFMMs.

Reconfigurable Intelligent Surfaces (RIS) are a new paradigm which, with judicious deployment and alignment, can enable more favorable propagation environments and better wireless network design. As such, they can offer a number of potential benefits for next generation wireless systems including improved coverage, better interference management and even security. In this paper, we consider an uplink next generation wireless system where each user is assisted with an RIS. We study the uplink power control problem in this distributed RIS-assisted wireless network. Specifically, we aim to minimize total uplink transmit power of all the users subject to each user's reliable communication requirements at the base station by a joint design of power, receiver filter and RIS phase matrices. We propose an iterative power control algorithm, combined with a successive convex approximation technique to solve the problem with non-convex phase constraints. Numerical results illustrate that distributed RIS assistance leads to uplink power savings when direct links are weak.

Permutation tests date back nearly a century to Fisher's randomized experiments, and remain an immensely popular statistical tool, used for testing hypotheses of independence between variables and other common inferential questions. Much of the existing literature has emphasized that, for the permutation p-value to be valid, one must first pick a subgroup $G$ of permutations (which could equal the full group) and then recalculate the test statistic on permuted data using either an exhaustive enumeration of $G$, or a sample from $G$ drawn uniformly at random. In this work, we demonstrate that the focus on subgroups and uniform sampling are both unnecessary for validity -- in fact, a simple random modification of the permutation p-value remains valid even when using an arbitrary distribution (not necessarily uniform) over any subset of permutations (not necessarily a subgroup). We provide a unified theoretical treatment of such generalized permutation tests, recovering all known results from the literature as special cases. Thus, this work expands the flexibility of the permutation test toolkit available to the practitioner.

The dynamics of a turbulent flow tend to occupy only a portion of the phase space at a statistically stationary regime. From a dynamical systems point of view, this portion is the attractor. The knowledge of the turbulent attractor is useful for two purposes, at least: (i) We can gain physical insight into turbulence (what is the shape and geometry of the attractor?), and (ii) it provides the minimal number of degrees of freedom to accurately describe the turbulent dynamics. Autoencoders enable the computation of an optimal latent space, which is a low-order representation of the dynamics. If properly trained and correctly designed, autoencoders can learn an approximation of the turbulent attractor, as shown by Doan, Racca and Magri (2022). In this paper, we theoretically interpret the transformations of an autoencoder. First, we remark that the latent space is a curved manifold with curvilinear coordinates, which can be analyzed with simple tools from Riemann geometry. Second, we characterize the geometrical properties of the latent space. We mathematically derive the metric tensor, which provides a mathematical description of the manifold. Third, we propose a method -- proper latent decomposition (PLD) -- that generalizes proper orthogonal decomposition of turbulent flows on the autoencoder latent space. This decomposition finds the dominant directions in the curved latent space. This theoretical work opens up computational opportunities for interpreting autoencoders and creating reduced-order models of turbulent flows.

Tests for structural breaks in time series should ideally be sensitive to breaks in the parameter of interest, while being robust to nuisance changes. Statistical analysis thus needs to allow for some form of nonstationarity under the null hypothesis of no change. In this paper, estimators for integrated parameters of locally stationary time series are constructed and a corresponding functional central limit theorem is established, enabling change-point inference for a broad class of parameters under mild assumptions. The proposed framework covers all parameters which may be expressed as nonlinear functions of moments, for example kurtosis, autocorrelation, and coefficients in a linear regression model. To perform feasible inference based on the derived limit distribution, a bootstrap variant is proposed and its consistency is established. The methodology is illustrated by means of a simulation study and by an application to high-frequency asset prices.

The Laplace-Beltrami problem on closed surfaces embedded in three dimensions arises in many areas of physics, including molecular dynamics (surface diffusion), electromagnetics (harmonic vector fields), and fluid dynamics (vesicle deformation). In particular, the Hodge decomposition of vector fields tangent to a surface can be computed by solving a sequence of Laplace-Beltrami problems. Such decompositions are very important in magnetostatic calculations and in various plasma and fluid flow problems. In this work we develop $L^2$-invertibility theory for the Laplace-Beltrami operator on piecewise smooth surfaces, extending earlier weak formulations and integral equation approaches on smooth surfaces. Furthermore, we reformulate the weak form of the problem as an interface problem with continuity conditions across edges of adjacent piecewise smooth panels of the surface. We then provide high-order numerical examples along surfaces of revolution to support our analysis, and discuss numerical extensions to general surfaces embedded in three dimensions.

北京阿比特科技有限公司