Accurate and robust navigation in unstructured environments requires fusing data from multiple sensors. Such fusion ensures that the robot is better aware of its surroundings, including areas of the environment that are not immediately visible but were visible at a different time. To solve this problem, we propose a method for traversability prediction in challenging outdoor environments using a sequence of RGB and depth images fused with pose estimations. Our method, termed WayFASTER (Waypoints-Free Autonomous System for Traversability with Enhanced Robustness), uses experience data recorded from a receding horizon estimator to train a self-supervised neural network for traversability prediction, eliminating the need for heuristics. Our experiments demonstrate that our method excels at avoiding obstacles, and correctly detects that traversable terrains, such as tall grass, can be navigable. By using a sequence of images, WayFASTER significantly enhances the robot's awareness of its surroundings, enabling it to predict the traversability of terrains that are not immediately visible. This enhanced awareness contributes to better navigation performance in environments where such predictive capabilities are essential.
Numerous prior studies predominantly emphasize constructing relation vectors for individual neighborhood points and generating dynamic kernels for each vector and embedding these into high-dimensional spaces to capture implicit local structures. However, we contend that such implicit high-dimensional structure modeling approch inadequately represents the local geometric structure of point clouds due to the absence of explicit structural information. Hence, we introduce X-3D, an explicit 3D structure modeling approach. X-3D functions by capturing the explicit local structural information within the input 3D space and employing it to produce dynamic kernels with shared weights for all neighborhood points within the current local region. This modeling approach introduces effective geometric prior and significantly diminishes the disparity between the local structure of the embedding space and the original input point cloud, thereby improving the extraction of local features. Experiments show that our method can be used on a variety of methods and achieves state-of-the-art performance on segmentation, classification, detection tasks with lower extra computational cost, such as \textbf{90.7\%} on ScanObjectNN for classification, \textbf{79.2\%} on S3DIS 6 fold and \textbf{74.3\%} on S3DIS Area 5 for segmentation, \textbf{76.3\%} on ScanNetV2 for segmentation and \textbf{64.5\%} mAP , \textbf{46.9\%} mAP on SUN RGB-D and \textbf{69.0\%} mAP , \textbf{51.1\%} mAP on ScanNetV2 . Our code is available at \href{//github.com/sunshuofeng/X-3D}{//github.com/sunshuofeng/X-3D}.
In dynamic operational environments, particularly in collaborative robotics, the inevitability of failures necessitates robust and adaptable recovery strategies. Traditional automated recovery strategies, while effective for predefined scenarios, often lack the flexibility required for on-the-fly task management and adaptation to expected failures. Addressing this gap, we propose a novel approach that models recovery behaviors as adaptable robotic skills, leveraging the Behavior Trees and Motion Generators~(BTMG) framework for policy representation. This approach distinguishes itself by employing reinforcement learning~(RL) to dynamically refine recovery behavior parameters, enabling a tailored response to a wide array of failure scenarios with minimal human intervention. We assess our methodology through a series of progressively challenging scenarios within a peg-in-a-hole task, demonstrating the approach's effectiveness in enhancing operational efficiency and task success rates in collaborative robotics settings. We validate our approach using a dual-arm KUKA robot.
3D simulated environments play a critical role in Embodied AI, but their creation requires expertise and extensive manual effort, restricting their diversity and scope. To mitigate this limitation, we present Holodeck, a system that generates 3D environments to match a user-supplied prompt fully automatedly. Holodeck can generate diverse scenes, e.g., arcades, spas, and museums, adjust the designs for styles, and can capture the semantics of complex queries such as "apartment for a researcher with a cat" and "office of a professor who is a fan of Star Wars". Holodeck leverages a large language model (i.e., GPT-4) for common sense knowledge about what the scene might look like and uses a large collection of 3D assets from Objaverse to populate the scene with diverse objects. To address the challenge of positioning objects correctly, we prompt GPT-4 to generate spatial relational constraints between objects and then optimize the layout to satisfy those constraints. Our large-scale human evaluation shows that annotators prefer Holodeck over manually designed procedural baselines in residential scenes and that Holodeck can produce high-quality outputs for diverse scene types. We also demonstrate an exciting application of Holodeck in Embodied AI, training agents to navigate in novel scenes like music rooms and daycares without human-constructed data, which is a significant step forward in developing general-purpose embodied agents.
Blockchain technology ensures secure and trustworthy data flow between multiple participants on the chain, but interoperability of on-chain and off-chain data has always been a difficult problem that needs to be solved. To solve the problem that blockchain systems cannot access off-chain data, oracle is introduced. however, existing research mainly focuses on the consistency and integrity of data, but ignores the problem that oracle nodes may be externally attacked or provide false data for selfish motives, resulting in the unresolved problem of data accuracy. In this paper, we introduce a new decentralized testing architecture (DesTest) that aims to improve data accuracy. A blockchain oracle random secret testing mechanism is first proposed to enhance the monitoring and verification of nodes by introducing a dynamic anonymized question-verification committee. Based on this, a comprehensive evaluation incentive mechanism is designed to incentivize honest work performance by evaluating nodes based on their reputation scores. The simulation results show that we successfully reduced the discrete entropy value of the acquired data and the real value of the data by 61.4%.
Current methods for 3D reconstruction and environmental mapping frequently face challenges in achieving high precision, highlighting the need for practical and effective solutions. In response to this issue, our study introduces FlyNeRF, a system integrating Neural Radiance Fields (NeRF) with drone-based data acquisition for high-quality 3D reconstruction. Utilizing unmanned aerial vehicle (UAV) for capturing images and corresponding spatial coordinates, the obtained data is subsequently used for the initial NeRF-based 3D reconstruction of the environment. Further evaluation of the reconstruction render quality is accomplished by the image evaluation neural network developed within the scope of our system. According to the results of the image evaluation module, an autonomous algorithm determines the position for additional image capture, thereby improving the reconstruction quality. The neural network introduced for render quality assessment demonstrates an accuracy of 97%. Furthermore, our adaptive methodology enhances the overall reconstruction quality, resulting in an average improvement of 2.5 dB in Peak Signal-to-Noise Ratio (PSNR) for the 10% quantile. The FlyNeRF demonstrates promising results, offering advancements in such fields as environmental monitoring, surveillance, and digital twins, where high-fidelity 3D reconstructions are crucial.
Generalized Class Discovery (GCD) aims to dynamically assign labels to unlabelled data partially based on knowledge learned from labelled data, where the unlabelled data may come from known or novel classes. The prevailing approach generally involves clustering across all data and learning conceptions by prototypical contrastive learning. However, existing methods largely hinge on the performance of clustering algorithms and are thus subject to their inherent limitations. Firstly, the estimated cluster number is often smaller than the ground truth, making the existing methods suffer from the lack of prototypes for comprehensive conception learning. To address this issue, we propose an adaptive probing mechanism that introduces learnable potential prototypes to expand cluster prototypes (centers). As there is no ground truth for the potential prototype, we develop a self-supervised prototype learning framework to optimize the potential prototype in an end-to-end fashion. Secondly, clustering is computationally intensive, and the conventional strategy of clustering both labelled and unlabelled instances exacerbates this issue. To counteract this inefficiency, we opt to cluster only the unlabelled instances and subsequently expand the cluster prototypes with our introduced potential prototypes to fast explore novel classes. Despite the simplicity of our proposed method, extensive empirical analysis on a wide range of datasets confirms that our method consistently delivers state-of-the-art results. Specifically, our method surpasses the nearest competitor by a significant margin of \textbf{9.7}$\%$ within the Stanford Cars dataset and \textbf{12$\times$} clustering efficiency within the Herbarium 19 dataset. We will make the code and checkpoints publicly available at \url{//github.com/xjtuYW/PNP.git}.
Underwater datacenters (UDCs) hold promise as next-generation data storage due to their energy efficiency and environmental sustainability benefits. While the natural cooling properties of water save power, the isolated aquatic environment and long-range sound propagation in water create unique vulnerabilities which differ from those of on-land data centers. Our research discovers the unique vulnerabilities of fault-tolerant storage devices, resource allocation software, and distributed file systems to acoustic injection attacks in UDCs. With a realistic testbed approximating UDC server operations, we empirically characterize the capabilities of acoustic injection underwater and find that an attacker can reduce fault-tolerant RAID 5 storage system throughput by 17% up to 100%. Our closed-water analyses reveal that attackers can (i) cause unresponsiveness and automatic node removal in a distributed filesystem with only 2.4 minutes of sustained acoustic injection, (ii) induce a distributed database's latency to increase by up to 92.7% to reduce system reliability, and (iii) induce load-balance managers to redirect up to 74% of resources to a target server to cause overload or force resource colocation. Furthermore, we perform open-water experiments in a lake and find that an attacker can cause controlled throughput degradation at a maximum allowable distance of 6.35 m using a commercial speaker. We also investigate and discuss the effectiveness of standard defenses against acoustic injection attacks. Finally, we formulate a novel machine learning-based detection system that reaches 0% False Positive Rate and 98.2% True Positive Rate trained on our dataset of profiled hard disk drives under 30-second FIO benchmark execution. With this work, we aim to help manufacturers proactively protect UDCs against acoustic injection attacks and ensure the security of subsea computing infrastructures.
Autonomous driving requires an accurate representation of the environment. A strategy toward high accuracy is to fuse data from several sensors. Learned Bird's-Eye View (BEV) encoders can achieve this by mapping data from individual sensors into one joint latent space. For cost-efficient camera-only systems, this provides an effective mechanism to fuse data from multiple cameras with different views. Accuracy can further be improved by aggregating sensor information over time. This is especially important in monocular camera systems to account for the lack of explicit depth and velocity measurements. Thereby, the effectiveness of developed BEV encoders crucially depends on the operators used to aggregate temporal information and on the used latent representation spaces. We analyze BEV encoders proposed in the literature and compare their effectiveness, quantifying the effects of aggregation operators and latent representations. While most existing approaches aggregate temporal information either in image or in BEV latent space, our analyses and performance comparisons suggest that these latent representations exhibit complementary strengths. Therefore, we develop a novel temporal BEV encoder, TempBEV, which integrates aggregated temporal information from both latent spaces. We consider subsequent image frames as stereo through time and leverage methods from optical flow estimation for temporal stereo encoding. Empirical evaluation on the NuScenes dataset shows a significant improvement by TempBEV over the baseline for 3D object detection and BEV segmentation. The ablation uncovers a strong synergy of joint temporal aggregation in the image and BEV latent space. These results indicate the overall effectiveness of our approach and make a strong case for aggregating temporal information in both image and BEV latent spaces.
Network programmability allows modification of fine-grain data plane functionality. The performance benefits of data plane programmability have motivated many researchers to offload computation that previously operated only on servers to the network, creating the notion of in-network computing (INC). Because failures can occur in the data plane, fault tolerance mechanisms are essential for INC. However, INC operators and developers must manually set fault tolerance requirements using domain knowledge to change the source code. These manually set requirements may take time and lead to errors in case of misconfiguration. In this work, we present Araucaria, a system that aims to simplify the definition and implementation of fault tolerance requirements for INC. The system allows requirements specification using an intent language, which enables the expression of consistency and availability requirements in a constrained natural language. A refinement process translates the intent and incorporates the essential building blocks and configurations into the INC code. We present a prototype of Araucaria and analyze the end-to-end system behavior. Experiments demonstrate that the refinement scales to multiple intents and that the system provides fault tolerance with negligible overhead in failure scenarios.
Generative commonsense reasoning which aims to empower machines to generate sentences with the capacity of reasoning over a set of concepts is a critical bottleneck for text generation. Even the state-of-the-art pre-trained language generation models struggle at this task and often produce implausible and anomalous sentences. One reason is that they rarely consider incorporating the knowledge graph which can provide rich relational information among the commonsense concepts. To promote the ability of commonsense reasoning for text generation, we propose a novel knowledge graph augmented pre-trained language generation model KG-BART, which encompasses the complex relations of concepts through the knowledge graph and produces more logical and natural sentences as output. Moreover, KG-BART can leverage the graph attention to aggregate the rich concept semantics that enhances the model generalization on unseen concept sets. Experiments on benchmark CommonGen dataset verify the effectiveness of our proposed approach by comparing with several strong pre-trained language generation models, particularly KG-BART outperforms BART by 5.80, 4.60, in terms of BLEU-3, 4. Moreover, we also show that the generated context by our model can work as background scenarios to benefit downstream commonsense QA tasks.