亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study hypothesis testing under communication constraints, where each sample is quantized before being revealed to a statistician. Without communication constraints, it is well known that the sample complexity of simple binary hypothesis testing is characterized by the Hellinger distance between the distributions. We show that the sample complexity of simple binary hypothesis testing under communication constraints is at most a logarithmic factor larger than in the unconstrained setting and this bound is tight. We develop a polynomial-time algorithm that achieves the aforementioned sample complexity. Our framework extends to robust hypothesis testing, where the distributions are corrupted in the total variation distance. Our proofs rely on a new reverse data processing inequality and a reverse Markov inequality, which may be of independent interest. For simple $M$-ary hypothesis testing, the sample complexity in the absence of communication constraints has a logarithmic dependence on $M$. We show that communication constraints can cause an exponential blow-up leading to $\Omega(M)$ sample complexity even for adaptive algorithms.

相關內容

Constant (naive) imputation is still widely used in practice as this is a first easy-to-use technique to deal with missing data. Yet, this simple method could be expected to induce a large bias for prediction purposes, as the imputed input may strongly differ from the true underlying data. However, recent works suggest that this bias is low in the context of high-dimensional linear predictors when data is supposed to be missing completely at random (MCAR). This paper completes the picture for linear predictors by confirming the intuition that the bias is negligible and that surprisingly naive imputation also remains relevant in very low dimension.To this aim, we consider a unique underlying random features model, which offers a rigorous framework for studying predictive performances, whilst the dimension of the observed features varies.Building on these theoretical results, we establish finite-sample bounds on stochastic gradient (SGD) predictors applied to zero-imputed data, a strategy particularly well suited for large-scale learning.If the MCAR assumption appears to be strong, we show that similar favorable behaviors occur for more complex missing data scenarios.

Gaussian processes are a widely embraced technique for regression and classification due to their good prediction accuracy, analytical tractability and built-in capabilities for uncertainty quantification. However, they suffer from the curse of dimensionality whenever the number of variables increases. This challenge is generally addressed by assuming additional structure in theproblem, the preferred options being either additivity or low intrinsic dimensionality. Our contribution for high-dimensional Gaussian process modeling is to combine them with a multi-fidelity strategy, showcasing the advantages through experiments on synthetic functions and datasets.

Finding suitable preconditioners to accelerate iterative solution methods, such as the conjugate gradient method, is an active area of research. In this paper, we develop a computationally efficient data-driven approach to replace the typically hand-engineered algorithms with neural networks. Optimizing the condition number of the linear system directly is computationally infeasible. Instead, our method generates an incomplete factorization of the matrix and is, therefore, referred to as neural incomplete factorization (NeuralIF). For efficient training, we utilize a stochastic approximation of the Frobenius loss which only requires matrix-vector multiplications. At the core of our method is a novel messagepassing block, inspired by sparse matrix theory, that aligns with the objective of finding a sparse factorization of the matrix. By replacing conventional preconditioners used within the conjugate gradient method by data-driven models based on graph neural networks, we accelerate the iterative solving procedure. We evaluate our proposed method on both a synthetic and a real-world problem arising from scientific computing and show its ability to reduce the solving time while remaining computationally efficient.

The privacy in classical federated learning can be breached through the use of local gradient results along with engineered queries to the clients. However, quantum communication channels are considered more secure because a measurement on the channel causes a loss of information, which can be detected by the sender. Therefore, the quantum version of federated learning can be used to provide more privacy. Additionally, sending an $N$ dimensional data vector through a quantum channel requires sending $\log N$ entangled qubits, which can potentially provide exponential efficiency if the data vector is utilized as quantum states. In this paper, we propose a quantum federated learning model where fixed design quantum chips are operated based on the quantum states sent by a centralized server. Based on the coming superposition states, the clients compute and then send their local gradients as quantum states to the server, where they are aggregated to update parameters. Since the server does not send model parameters, but instead sends the operator as a quantum state, the clients are not required to share the model. This allows for the creation of asynchronous learning models. In addition, the model as a quantum state is fed into client-side chips directly; therefore, it does not require measurements on the upcoming quantum state to obtain model parameters in order to compute gradients. This can provide efficiency over the models where the parameter vector is sent via classical or quantum channels and local gradients are obtained through the obtained values of these parameters.

Heteroskedasticity testing in nonparametric regression is a classic statistical problem with important practical applications, yet fundamental limits are unknown. Adopting a minimax perspective, this article considers the testing problem in the context of an $\alpha$-H\"{o}lder mean and a $\beta$-H\"{o}lder variance function. For $\alpha > 0$ and $\beta \in (0, 1/2)$, the sharp minimax separation rate $n^{-4\alpha} + n^{-4\beta/(4\beta+1)} + n^{-2\beta}$ is established. To achieve the minimax separation rate, a kernel-based statistic using first-order squared differences is developed. Notably, the statistic estimates a proxy rather than a natural quadratic functional (the squared distance between the variance function and its best $L^2$ approximation by a constant) suggested in previous work. The setting where no smoothness is assumed on the variance function is also studied; the variance profile across the design points can be arbitrary. Despite the lack of structure, consistent testing turns out to still be possible by using the Gaussian character of the noise, and the minimax rate is shown to be $n^{-4\alpha} + n^{-1/2}$. Exploiting noise information happens to be a fundamental necessity as consistent testing is impossible if nothing more than zero mean and unit variance is known about the noise distribution. Furthermore, in the setting where the variance function is $\beta$-H\"{o}lder but heteroskedasticity is measured only with respect to the design points, the minimax separation rate is shown to be $n^{-4\alpha} + n^{-\left((1/2) \vee (4\beta/(4\beta+1))\right)}$ when the noise is Gaussian and $n^{-4\alpha} + n^{-4\beta/(4\beta+1)} + n^{-2\beta}$ when the noise distribution is unknown.

A Gaussian process is proposed as a model for the posterior distribution of the local predictive ability of a model or expert, conditional on a vec- tor of covariates, from historical predictions in the form of log predictive scores. Assuming Gaussian expert predictions and a Gaussian data generat- ing process, a linear transformation of the predictive score follows a noncen- tral chi-squared distribution with one degree of freedom. Motivated by this we develop a non-central chi-squared Gaussian process regression to flexibly model local predictive ability, with the posterior distribution of the latent GP function and kernel hyperparameters sampled by Hamiltonian Monte Carlo. We show that a cube-root transformation of the log scores is approximately Gaussian with homoscedastic variance, which makes it possible to estimate the model much faster by marginalizing the latent GP function analytically. Linear pools based on learned local predictive ability are applied to predict daily bike usage in Washington DC.

Building prediction models from mass-spectrometry data is challenging due to the abundance of correlated features with varying degrees of zero-inflation, leading to a common interest in reducing the features to a concise predictor set with good predictive performance. In this study, we formally established and examined regularized regression approaches, designed to address zero-inflated and correlated predictors. In particular, we describe a novel two-stage regularized regression approach (ridge-garrote) explicitly modelling zero-inflated predictors using two component variables, comprising a ridge estimator in the first stage and subsequently applying a nonnegative garrote estimator in the second stage. We contrasted ridge-garrote with one-stage methods (ridge, lasso) and other two-stage regularized regression approaches (lasso-ridge, ridge-lasso) for zero-inflated predictors. We assessed the predictive performance and predictor selection properties of these methods in a comparative simulation study and a real-data case study to predict kidney function using peptidomic features derived from mass-spectrometry. In the simulation study, the predictive performance of all assessed approaches was comparable, yet the ridge-garrote approach consistently selected more parsimonious models compared to its competitors in most scenarios. While lasso-ridge achieved higher predictive accuracy than its competitors, it exhibited high variability in the number of selected predictors. Ridge-lasso exhibited slightly superior predictive accuracy than ridge-garrote but at the expense of selecting more noise predictors. Overall, ridge emerged as a favourable option when variable selection is not a primary concern, while ridge-garrote demonstrated notable practical utility in selecting a parsimonious set of predictors, with only minimal compromise in predictive accuracy.

The matched case-control design, up until recently mostly pertinent to epidemiological studies, is becoming customary in biomedical applications as well. For instance, in omics studies, it is quite common to compare cancer and healthy tissue from the same patient. Furthermore, researchers today routinely collect data from various and variable sources that they wish to relate to the case-control status. This highlights the need to develop and implement statistical methods that can take these tendencies into account. We present an R package penalizedclr, that provides an implementation of the penalized conditional logistic regression model for analyzing matched case-control studies. It allows for different penalties for different blocks of covariates, and it is therefore particularly useful in the presence of multi-source omics data. Both L1 and L2 penalties are implemented. Additionally, the package implements stability selection for variable selection in the considered regression model. The proposed method fills a gap in the available software for fitting high-dimensional conditional logistic regression model accounting for the matched design and block structure of predictors/features. The output consists of a set of selected variables that are significantly associated with case-control status. These features can then be investigated in terms of functional interpretation or validation in further, more targeted studies.

Artificial neural networks thrive in solving the classification problem for a particular rigid task, acquiring knowledge through generalized learning behaviour from a distinct training phase. The resulting network resembles a static entity of knowledge, with endeavours to extend this knowledge without targeting the original task resulting in a catastrophic forgetting. Continual learning shifts this paradigm towards networks that can continually accumulate knowledge over different tasks without the need to retrain from scratch. We focus on task incremental classification, where tasks arrive sequentially and are delineated by clear boundaries. Our main contributions concern 1) a taxonomy and extensive overview of the state-of-the-art, 2) a novel framework to continually determine the stability-plasticity trade-off of the continual learner, 3) a comprehensive experimental comparison of 11 state-of-the-art continual learning methods and 4 baselines. We empirically scrutinize method strengths and weaknesses on three benchmarks, considering Tiny Imagenet and large-scale unbalanced iNaturalist and a sequence of recognition datasets. We study the influence of model capacity, weight decay and dropout regularization, and the order in which the tasks are presented, and qualitatively compare methods in terms of required memory, computation time, and storage.

Graph representation learning for hypergraphs can be used to extract patterns among higher-order interactions that are critically important in many real world problems. Current approaches designed for hypergraphs, however, are unable to handle different types of hypergraphs and are typically not generic for various learning tasks. Indeed, models that can predict variable-sized heterogeneous hyperedges have not been available. Here we develop a new self-attention based graph neural network called Hyper-SAGNN applicable to homogeneous and heterogeneous hypergraphs with variable hyperedge sizes. We perform extensive evaluations on multiple datasets, including four benchmark network datasets and two single-cell Hi-C datasets in genomics. We demonstrate that Hyper-SAGNN significantly outperforms the state-of-the-art methods on traditional tasks while also achieving great performance on a new task called outsider identification. Hyper-SAGNN will be useful for graph representation learning to uncover complex higher-order interactions in different applications.

北京阿比特科技有限公司