亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We prove the convergence of meshfree method for solving the elliptic Monge-Ampere equation with Dirichlet boundary on the bounded domain. L2 error is obtained based on the kernel-based trial spaces generated by the compactly supported radial basis functions. We obtain the convergence result when the testing discretization is finer than the trial discretization. The convergence rate depend on the regularity of the solution, the smoothness of the computing domain, and the approximation of scaled kernel-based spaces. The presented convergence theory covers a wide range of kernel-based trial spaces including stationary approximation and non-stationary approximation. An extension to non-Dirichlet boundary condition is in a forthcoming paper.

相關內容

{We analyze a general Implicit-Explicit (IMEX) time discretization for the compressible Euler equations of gas dynamics, showing that they are asymptotic-preserving (AP) in the low Mach number limit. The analysis is carried out for a general equation of state (EOS). We consider both a single asymptotic length scale and two length scales. We then show that, when coupling these time discretizations with a Discontinuous Galerkin (DG) space discretization with appropriate fluxes, an all Mach number numerical method is obtained. A number of relevant benchmarks for ideal gases and their non-trivial extension to non-ideal EOS validate the performed analysis.

It is well-known that one can construct solutions to the nonlocal Cahn-Hilliard equation with singular potentials via Yosida approximation with parameter $\lambda \to 0$. The usual method is based on compactness arguments and does not provide any rate of convergence. Here, we fill the gap and we obtain an explicit convergence rate $\sqrt{\lambda}$. The proof is based on the theory of maximal monotone operators and an observation that the nonlocal operator is of Hilbert-Schmidt type. Our estimate can provide convergence result for the Galerkin methods where the parameter $\lambda$ could be linked to the discretization parameters, yielding appropriate error estimates.

This work focuses on the numerical approximations of neutral stochastic delay differential equations with their drift and diffusion coefficients growing super-linearly with respect to both delay variables and state variables. Under generalized monotonicity conditions, we prove that the backward Euler method not only converges strongly in the mean square sense with order $1/2$, but also inherit the mean square exponential stability of the original equations. As a byproduct, we obtain the same results on convergence rate and exponential stability of the backward Euler method for stochastic delay differential equations with generalized monotonicity conditions. These theoretical results are finally supported by several numerical experiments.

This research article discusses a numerical solution of the radiative transfer equation based on the weak Galerkin finite element method. We discretize the angular variable by means of the discrete-ordinate method. Then the resulting semi-discrete hyperbolic system is approximated using the weak Galerkin method. The stability result for the proposed numerical method is devised. A priori error analysis is established under the suitable norm. In order to examine the theoretical results, numerical experiments are carried out.

We propose a hybrid iterative method based on MIONet for PDEs, which combines the traditional numerical iterative solver and the recent powerful machine learning method of neural operator, and further systematically analyze its theoretical properties, including the convergence condition, the spectral behavior, as well as the convergence rate, in terms of the errors of the discretization and the model inference. We show the theoretical results for the frequently-used smoothers, i.e. Richardson (damped Jacobi) and Gauss-Seidel. We give an upper bound of the convergence rate of the hybrid method w.r.t. the model correction period, which indicates a minimum point to make the hybrid iteration converge fastest. Several numerical examples including the hybrid Richardson (Gauss-Seidel) iteration for the 1-d (2-d) Poisson equation are presented to verify our theoretical results, and also reflect an excellent acceleration effect. As a meshless acceleration method, it is provided with enormous potentials for practice applications.

This paper studies the convergence of a spatial semidiscretization of a three-dimensional stochastic Allen-Cahn equation with multiplicative noise. For non-smooth initial values, the regularity of the mild solution is investigated, and an error estimate is derived with the spatial $ L^2 $-norm. For smooth initial values, two error estimates with the general spatial $ L^q $-norms are established.

We prove explicit uniform two-sided bounds for the phase functions of Bessel functions and of their derivatives. As a consequence, we obtain new enclosures for the zeros of Bessel functions and their derivatives in terms of inverse values of some elementary functions. These bounds are valid, with a few exceptions, for all zeros and all Bessel functions with non-negative indices. We provide numerical evidence showing that our bounds either improve or closely match the best previously known ones.

We propose a new method called the Metropolis-adjusted Mirror Langevin algorithm for approximate sampling from distributions whose support is a compact and convex set. This algorithm adds an accept-reject filter to the Markov chain induced by a single step of the Mirror Langevin algorithm (Zhang et al., 2020), which is a basic discretisation of the Mirror Langevin dynamics. Due to the inclusion of this filter, our method is unbiased relative to the target, while known discretisations of the Mirror Langevin dynamics including the Mirror Langevin algorithm have an asymptotic bias. For this algorithm, we also give upper bounds for the number of iterations taken to mix to a constrained distribution whose potential is relatively smooth, convex, and Lipschitz continuous with respect to a self-concordant mirror function. As a consequence of the reversibility of the Markov chain induced by the inclusion of the Metropolis-Hastings filter, we obtain an exponentially better dependence on the error tolerance for approximate constrained sampling. We also present numerical experiments that corroborate our theoretical findings.

We address the problem of constructing approximations based on orthogonal polynomials that preserve an arbitrary set of moments of a given function without loosing the spectral convergence property. To this aim, we compute the constrained polynomial of best approximation for a generic basis of orthogonal polynomials. The construction is entirely general and allows us to derive structure preserving numerical methods for partial differential equations that require the conservation of some moments of the solution, typically representing relevant physical quantities of the problem. These properties are essential to capture with high accuracy the long-time behavior of the solution. We illustrate with the aid of several numerical applications to Fokker-Planck equations the generality and the performances of the present approach.

It is well-known that the Fourier-Galerkin spectral method has been a popular approach for the numerical approximation of the deterministic Boltzmann equation with spectral accuracy rigorously proved. In this paper, we will show that such a spectral convergence of the Fourier-Galerkin spectral method also holds for the Boltzmann equation with uncertainties arising from both collision kernel and initial condition. Our proof is based on newly-established spaces and norms that are carefully designed and take the velocity variable and random variables with their high regularities into account altogether. For future studies, this theoretical result will provide a solid foundation for further showing the convergence of the full-discretized system where both the velocity and random variables are discretized simultaneously.

北京阿比特科技有限公司