亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

{We analyze a general Implicit-Explicit (IMEX) time discretization for the compressible Euler equations of gas dynamics, showing that they are asymptotic-preserving (AP) in the low Mach number limit. The analysis is carried out for a general equation of state (EOS). We consider both a single asymptotic length scale and two length scales. We then show that, when coupling these time discretizations with a Discontinuous Galerkin (DG) space discretization with appropriate fluxes, an all Mach number numerical method is obtained. A number of relevant benchmarks for ideal gases and their non-trivial extension to non-ideal EOS validate the performed analysis.

相關內容

We develop a boundary integral equation-based numerical method to solve for the electrostatic potential in two dimensions, inside a medium with piecewise constant conductivity, where the boundary condition is given by the complete electrode model (CEM). The CEM is seen as the most accurate model of the physical setting where electrodes are placed on the surface of an electrically conductive body, and currents are injected through the electrodes and the resulting voltages are measured again on these same electrodes. The integral equation formulation is based on expressing the electrostatic potential as the solution to a finite number of Laplace equations which are coupled through boundary matching conditions. This allows us to re-express the solution in terms of single layer potentials; the problem is thus re-cast as a system of integral equations on a finite number of smooth curves. We discuss an adaptive method for the solution of the resulting system of mildly singular integral equations. This solver is both fast and accurate. We then present a numerical inverse solver for electrical impedance tomography (EIT) which uses our forward solver at its core. To demonstrate the applicability of our results we test our numerical methods on an open electrical impedance tomography data set provided by the Finnish Inverse Problems Society.

Simulated events are key ingredients in almost all high-energy physics analyses. However, imperfections in the simulation can lead to sizeable differences between the observed data and simulated events. The effects of such mismodelling on relevant observables must be corrected either effectively via scale factors, with weights or by modifying the distributions of the observables and their correlations. We introduce a correction method that transforms one multidimensional distribution (simulation) into another one (data) using a simple architecture based on a single normalising flow with a boolean condition. We demonstrate the effectiveness of the method on a physics-inspired toy dataset with non-trivial mismodelling of several observables and their correlations.

We develop the frozen Gaussian approximation (FGA) for the fractional Schr\"odinger equation in the semi-classical regime, where the solution is highly oscillatory when the scaled Planck constant $\varepsilon$ is small. This method approximates the solution to the Schr\"odinger equation by an integral representation based on asymptotic analysis and provides a highly efficient computational method for high-frequency wave function evolution. In particular, we revise the standard FGA formula to address the singularities arising in the higher-order derivatives of coefficients of the associated Hamiltonian flow that are second-order continuously differentiable or smooth in conventional FGA analysis. We then establish its convergence to the true solution. Additionally, we provide some numerical examples to verify the accuracy and convergence behavior of the frozen Gaussian approximation method.

The present work is devoted to strong approximations of a generalized A\"{i}t-Sahalia model arising from mathematical finance. The numerical study of the considered model faces essential difficulties caused by a drift that blows up at the origin, highly nonlinear drift and diffusion coefficients and positivity-preserving requirement. In this paper, a novel explicit Euler-type scheme is proposed, which is easily implementable and able to preserve positivity of the original model unconditionally, i.e., for any time step-size $h >0$. A mean-square convergence rate of order $0.5$ is also obtained for the proposed scheme in both non-critical and general critical cases. Our work is motivated by the need to justify the multi-level Monte Carlo (MLMC) simulations for the underlying model, where the rate of mean-square convergence is required and the preservation of positivity is desirable particularly for large discretization time steps. Numerical experiments are finally provided to confirm the theoretical findings.

We study the Markov chain Monte Carlo (MCMC) estimator for numerical integration for functions that do not need to be square integrable w.r.t. the invariant distribution. For chains with a spectral gap we show that the absolute mean error for $L^p$ functions, with $p \in (1,2)$, decreases like $n^{1/p -1}$, which is known to be the optimal rate. This improves currently known results where an additional parameter $\delta>0$ appears and the convergence is of order $n^{(1+\delta)/p-1}$.

We consider the cubic nonlinear Schr\"odinger equation with a spatially rough potential, a key equation in the mathematical setup for nonlinear Anderson localization. Our study comprises two main parts: new optimal results on the well-posedness analysis on the PDE level, and subsequently a new efficient numerical method, its convergence analysis and simulations that illustrate our analytical results. In the analysis part, our results focus on understanding how the regularity of the solution is influenced by the regularity of the potential, where we provide quantitative and explicit characterizations. Ill-posedness results are also established to demonstrate the sharpness of the obtained regularity characterizations and to indicate the minimum regularity required from the potential for the NLS to be solvable. Building upon the obtained regularity results, we design an appropriate numerical discretization for the model and establish its convergence with an optimal error bound. The numerical experiments in the end not only verify the theoretical regularity results, but also confirm the established convergence rate of the proposed scheme. Additionally, a comparison with other existing schemes is conducted to demonstrate the better accuracy of our new scheme in the case of a rough potential.

We investigate a second-order accurate time-stepping scheme for solving a time-fractional diffusion equation with a Caputo derivative of order~$\alpha \in (0,1)$. The basic idea of our scheme is based on local integration followed by linear interpolation. It reduces to the standard Crank--Nicolson scheme in the classical diffusion case, that is, as $\alpha\to 1$. Using a novel approach, we show that the proposed scheme is $\alpha$-robust and second-order accurate in the $L^2(L^2)$-norm, assuming a suitable time-graded mesh. For completeness, we use the Galerkin finite element method for the spatial discretization and discuss the error analysis under reasonable regularity assumptions on the given data. Some numerical results are presented at the end.

We present a full space-time numerical solution of the advection-diffusion equation using a continuous Galerkin finite element method. The Galerkin/least-square method is employed to ensure stability of the discrete variational problem. In the full space-time formulation, time is considered another dimension, and the time derivative is interpreted as an additional advection term of the field variable. We derive a priori error estimates and illustrate spatio-temporal convergence with several numerical examples. We also derive a posteriori error estimates, which coupled with adaptive space-time mesh refinement provide efficient and accurate solutions. The accuracy of the space-time solutions is illustrated against analytical solutions as well as against numerical solutions using a conventional time-marching algorithm.

This paper is concerned with structure-preserving numerical approximations for a class of nonlinear nonlocal Fokker-Planck equations, which admit a gradient flow structure and find application in diverse contexts. The solutions, representing density distributions, must be non-negative and satisfy a specific energy dissipation law. We design an arbitrary high-order discontinuous Galerkin (DG) method tailored for these model problems. Both semi-discrete and fully discrete schemes are shown to admit the energy dissipation law for non-negative numerical solutions. To ensure the preservation of positivity in cell averages at all time steps, we introduce a local flux correction applied to the DDG diffusive flux. Subsequently, a hybrid algorithm is presented, utilizing a positivity-preserving limiter, to generate positive and energy-dissipating solutions. Numerical examples are provided to showcase the high resolution of the numerical solutions and the verified properties of the DG schemes.

Entropy conditions play a crucial role in the extraction of a physically relevant solution for a system of conservation laws, thus motivating the construction of entropy stable schemes that satisfy a discrete analogue of such conditions. TeCNO schemes (Fjordholm et al. 2012) form a class of arbitrary high-order entropy stable finite difference solvers, which require specialized reconstruction algorithms satisfying the sign property at each cell interface. Recently, third-order WENO schemes called SP-WENO (Fjordholm and Ray, 2016) and SP-WENOc (Ray, 2018) have been designed to satisfy the sign property. However, these WENO algorithms can perform poorly near shocks, with the numerical solutions exhibiting large spurious oscillations. In the present work, we propose a variant of the SP-WENO, termed as Deep Sign-Preserving WENO (DSP-WENO), where a neural network is trained to learn the WENO weighting strategy. The sign property and third-order accuracy are strongly imposed in the algorithm, which constrains the WENO weight selection region to a convex polygon. Thereafter, a neural network is trained to select the WENO weights from this convex region with the goal of improving the shock-capturing capabilities without sacrificing the rate of convergence in smooth regions. The proposed synergistic approach retains the mathematical framework of the TeCNO scheme while integrating deep learning to remedy the computational issues of the WENO-based reconstruction. We present several numerical experiments to demonstrate the significant improvement with DSP-WENO over the existing variants of WENO satisfying the sign property.

北京阿比特科技有限公司