These notes are an overview of some classical linear methods in Multivariate Data Analysis. This is a good old domain, well established since the 60's, and refreshed timely as a key step in statistical learning. It can be presented as part of statistical learning, or as dimensionality reduction with a geometric flavor. Both approaches are tightly linked: it is easier to learn patterns from data in low dimensional spaces than in high-dimensional spaces. It is shown how a diversity of methods and tools boil down to a single core methods, PCA with SVD, such that the efforts to optimize codes for analyzing massive data sets like distributed memory and task-based programming or to improve the efficiency of the algorithms like Randomised SVD can focus on this shared core method, and benefit to all methods.
Change point detection is a commonly used technique in time series analysis, capturing the dynamic nature in which many real-world processes function. With the ever increasing troves of multivariate high-dimensional time series data, especially in neuroimaging and finance, there is a clear need for scalable and data-driven change point detection methods. Currently, change point detection methods for multivariate high-dimensional data are scarce, with even less available in high-level, easily accessible software packages. To this end, we introduce the R package fabisearch, available on the Comprehensive R Archive Network (CRAN), which implements the factorized binary search (FaBiSearch) methodology. FaBiSearch is a novel statistical method for detecting change points in the network structure of multivariate high-dimensional time series which employs non-negative matrix factorization (NMF), an unsupervised dimension reduction and clustering technique. Given the high computational cost of NMF, we implement the method in C++ code and use parallelization to reduce computation time. Further, we also utilize a new binary search algorithm to efficiently identify multiple change points and provide a new method for network estimation for data between change points. We show the functionality of the package and the practicality of the method by applying it to a neuroimaging and a finance data set. Lastly, we provide an interactive, 3-dimensional, brain-specific network visualization capability in a flexible, stand-alone function. This function can be conveniently used with any node coordinate atlas, and nodes can be color coded according to community membership (if applicable). The output is an elegantly displayed network laid over a cortical surface, which can be rotated in the 3-dimensional space.
Bayesian Optimization (BO) is a class of black-box, surrogate-based heuristics that can efficiently optimize problems that are expensive to evaluate, and hence admit only small evaluation budgets. BO is particularly popular for solving numerical optimization problems in industry, where the evaluation of objective functions often relies on time-consuming simulations or physical experiments. However, many industrial problems depend on a large number of parameters. This poses a challenge for BO algorithms, whose performance is often reported to suffer when the dimension grows beyond 15 variables. Although many new algorithms have been proposed to address this problem, it is not well understood which one is the best for which optimization scenario. In this work, we compare five state-of-the-art high-dimensional BO algorithms, with vanilla BO and CMA-ES on the 24 BBOB functions of the COCO environment at increasing dimensionality, ranging from 10 to 60 variables. Our results confirm the superiority of BO over CMA-ES for limited evaluation budgets and suggest that the most promising approach to improve BO is the use of trust regions. However, we also observe significant performance differences for different function landscapes and budget exploitation phases, indicating improvement potential, e.g., through hybridization of algorithmic components.
We present a simple linear regression based approach for learning the weights and biases of a neural network, as an alternative to standard gradient based backpropagation. The present work is exploratory in nature, and we restrict the description and experiments to (i) simple feedforward neural networks, (ii) scalar (single output) regression problems, and (iii) invertible activation functions. However, the approach is intended to be extensible to larger, more complex architectures. The key idea is the observation that the input to every neuron in a neural network is a linear combination of the activations of neurons in the previous layer, as well as the parameters (weights and biases) of the layer. If we are able to compute the ideal total input values to every neuron by working backwards from the output, we can formulate the learning problem as a linear least squares problem which iterates between updating the parameters and the activation values. We present an explicit algorithm that implements this idea, and we show that (at least for simple problems) the approach is more stable and faster than gradient-based backpropagation.
The linearized-Laplace approximation (LLA) has been shown to be effective and efficient in constructing Bayesian neural networks. It is theoretically compelling since it can be seen as a Gaussian process posterior with the mean function given by the neural network's maximum-a-posteriori predictive function and the covariance function induced by the empirical neural tangent kernel. However, while its efficacy has been studied in large-scale tasks like image classification, it has not been studied in sequential decision-making problems like Bayesian optimization where Gaussian processes -- with simple mean functions and kernels such as the radial basis function -- are the de-facto surrogate models. In this work, we study the usefulness of the LLA in Bayesian optimization and highlight its strong performance and flexibility. However, we also present some pitfalls that might arise and a potential problem with the LLA when the search space is unbounded.
In this paper, we investigate large-scale linear systems driven by a fractional Brownian motion (fBm) with Hurst parameter $H\in [1/2, 1)$. We interpret these equations either in the sense of Young ($H>1/2$) or Stratonovich ($H=1/2$). Especially fractional Young differential equations are well suited for modeling real-world phenomena as they capture memory effects. Although it is very complex to solve them in high dimensions, model reduction schemes for Young or Stratonovich settings have not yet been studied much. To address this gap, we analyze important features of fundamental solutions associated to the underlying systems. We prove a weak type of semigroup property which is the foundation of studying system Gramians. From the introduced Gramians, dominant subspace can be identified which is shown in this paper as well. The difficulty for fractional drivers with $H>1/2$ is that there is no link of the corresponding Gramians to algebraic equations making the computation very difficult. Therefore, we further propose empirical Gramians that can be learned from simulation data. Subsequently, we introduce projection-based reduced order models (ROMs) using the dominant subspace information. We point out that such projections are not always optimal for Stratonovich equations as stability might not be preserved and since the error might be larger than expected. Therefore, an improved ROM is proposed for $H=1/2$. We validate our techniques conducting numerical experiments on some large-scale stochastic differential equations driven by fBm resulting from spatial discretizations of fractional stochastic PDEs. Overall, our study provides useful insights into the applicability and effectiveness of reduced order methods for stochastic systems with fractional noise, which can potentially aid in the development of more efficient computational strategies for practical applications.
We expect the generalization error to improve with more samples from a similar task, and to deteriorate with more samples from an out-of-distribution (OOD) task. In this work, we show a counter-intuitive phenomenon: the generalization error of a task can be a non-monotonic function of the number of OOD samples. As the number of OOD samples increases, the generalization error on the target task improves before deteriorating beyond a threshold. In other words, there is value in training on small amounts of OOD data. We use Fisher's Linear Discriminant on synthetic datasets and deep networks on computer vision benchmarks such as MNIST, CIFAR-10, CINIC-10, PACS and DomainNet to demonstrate and analyze this phenomenon. In the idealistic setting where we know which samples are OOD, we show that these non-monotonic trends can be exploited using an appropriately weighted objective of the target and OOD empirical risk. While its practical utility is limited, this does suggest that if we can detect OOD samples, then there may be ways to benefit from them. When we do not know which samples are OOD, we show how a number of go-to strategies such as data-augmentation, hyper-parameter optimization, and pre-training are not enough to ensure that the target generalization error does not deteriorate with the number of OOD samples in the dataset.
Multi-fidelity models are of great importance due to their capability of fusing information coming from different numerical simulations, surrogates, and sensors. We focus on the approximation of high-dimensional scalar functions with low intrinsic dimensionality. By introducing a low dimensional bias we can fight the curse of dimensionality affecting these quantities of interest, especially for many-query applications. We seek a gradient-based reduction of the parameter space through linear active subspaces or a nonlinear transformation of the input space. Then we build a low-fidelity response surface based on such reduction, thus enabling nonlinear autoregressive multi-fidelity Gaussian process regression without the need of running new simulations with simplified physical models. This has a great potential in the data scarcity regime affecting many engineering applications. In this work we present a new multi-fidelity approach that involves active subspaces and the nonlinear level-set learning method, starting from the preliminary analysis previously conducted in Romor et al. 2020. The proposed framework is tested on two high-dimensional benchmark functions, and on a more complex car aerodynamics problem. We show how a low intrinsic dimensionality bias can increase the accuracy of Gaussian process response surfaces.
In this paper, we aim at establishing an approximation theory and a learning theory of distribution regression via a fully connected neural network (FNN). In contrast to the classical regression methods, the input variables of distribution regression are probability measures. Then we often need to perform a second-stage sampling process to approximate the actual information of the distribution. On the other hand, the classical neural network structure requires the input variable to be a vector. When the input samples are probability distributions, the traditional deep neural network method cannot be directly used and the difficulty arises for distribution regression. A well-defined neural network structure for distribution inputs is intensively desirable. There is no mathematical model and theoretical analysis on neural network realization of distribution regression. To overcome technical difficulties and address this issue, we establish a novel fully connected neural network framework to realize an approximation theory of functionals defined on the space of Borel probability measures. Furthermore, based on the established functional approximation results, in the hypothesis space induced by the novel FNN structure with distribution inputs, almost optimal learning rates for the proposed distribution regression model up to logarithmic terms are derived via a novel two-stage error decomposition technique.
The conjoining of dynamical systems and deep learning has become a topic of great interest. In particular, neural differential equations (NDEs) demonstrate that neural networks and differential equation are two sides of the same coin. Traditional parameterised differential equations are a special case. Many popular neural network architectures, such as residual networks and recurrent networks, are discretisations. NDEs are suitable for tackling generative problems, dynamical systems, and time series (particularly in physics, finance, ...) and are thus of interest to both modern machine learning and traditional mathematical modelling. NDEs offer high-capacity function approximation, strong priors on model space, the ability to handle irregular data, memory efficiency, and a wealth of available theory on both sides. This doctoral thesis provides an in-depth survey of the field. Topics include: neural ordinary differential equations (e.g. for hybrid neural/mechanistic modelling of physical systems); neural controlled differential equations (e.g. for learning functions of irregular time series); and neural stochastic differential equations (e.g. to produce generative models capable of representing complex stochastic dynamics, or sampling from complex high-dimensional distributions). Further topics include: numerical methods for NDEs (e.g. reversible differential equations solvers, backpropagation through differential equations, Brownian reconstruction); symbolic regression for dynamical systems (e.g. via regularised evolution); and deep implicit models (e.g. deep equilibrium models, differentiable optimisation). We anticipate this thesis will be of interest to anyone interested in the marriage of deep learning with dynamical systems, and hope it will provide a useful reference for the current state of the art.
State-of-the-art Convolutional Neural Network (CNN) benefits a lot from multi-task learning (MTL), which learns multiple related tasks simultaneously to obtain shared or mutually related representations for different tasks. The most widely-used MTL CNN structure is based on an empirical or heuristic split on a specific layer (e.g., the last convolutional layer) to minimize different task-specific losses. However, this heuristic sharing/splitting strategy may be harmful to the final performance of one or multiple tasks. In this paper, we propose a novel CNN structure for MTL, which enables automatic feature fusing at every layer. Specifically, we first concatenate features from different tasks according to their channel dimension, and then formulate the feature fusing problem as discriminative dimensionality reduction. We show that this discriminative dimensionality reduction can be done by 1x1 Convolution, Batch Normalization, and Weight Decay in one CNN, which we refer to as Neural Discriminative Dimensionality Reduction (NDDR). We perform ablation analysis in details for different configurations in training the network. The experiments carried out on different network structures and different task sets demonstrate the promising performance and desirable generalizability of our proposed method.