The growth of the Internet and its associated technologies; including digital services have tremendously impacted our society. However, scholars have noted a trend in data flow and collection; and have alleged mass surveillance and digital supremacy. To this end therefore, nations of the world such as Russia, China, Germany, Canada, France and Brazil among others have taken steps toward changing the narrative. The question now is, should Africans join these giants in this school of thought on digital sovereignty or fold their hands to remain on the other side of the divide? This question among others are the main reasons that provoked the thoughts of putting this paper together. This is with a view to demystifying the strategies to reconfigure data infrastructure in the context of Africa. It also highlights the benefits of digital technologies and its propensity to foster all round development in the continent as it relates to economic face-lift, employment creation, national security, among others. There is therefore a need for African nations to design appropriate blueprint to ensure security of her digital infrastructure and the flow of data within her cyber space. In addition, a roadmap in the immediate, short- and long-term in accordance with the framework of African developmental goals should be put in place to guide the implementation.
Policymakers face a broader challenge of how to view AI capabilities today and where does society stand in terms of those capabilities. This paper surveys AI capabilities and tackles this very issue, exploring it in context of political security in digital societies. We introduce a Matrix of Machine Influence to frame and navigate the adversarial applications of AI, and further extend the ideas of Information Management to better understand contemporary AI systems deployment as part of a complex information system. Providing a comprehensive review of man-machine interactions in our networked society and political systems, we suggest that better regulation and management of information systems can more optimally offset the risks of AI and utilise the emerging capabilities which these systems have to offer to policymakers and political institutions across the world. Hopefully this long essay will actuate further debates and discussions over these ideas, and prove to be a useful contribution towards governing the future of AI.
What is learning? 20$^{st}$ century formalizations of learning theory -- which precipitated revolutions in artificial intelligence -- focus primarily on $\mathit{in-distribution}$ learning, that is, learning under the assumption that the training data are sampled from the same distribution as the evaluation distribution. This assumption renders these theories inadequate for characterizing 21$^{st}$ century real world data problems, which are typically characterized by evaluation distributions that differ from the training data distributions (referred to as out-of-distribution learning). We therefore make a small change to existing formal definitions of learnability by relaxing that assumption. We then introduce $\mathbf{learning\ efficiency}$ (LE) to quantify the amount a learner is able to leverage data for a given problem, regardless of whether it is an in- or out-of-distribution problem. We then define and prove the relationship between generalized notions of learnability, and show how this framework is sufficiently general to characterize transfer, multitask, meta, continual, and lifelong learning. We hope this unification helps bridge the gap between empirical practice and theoretical guidance in real world problems. Finally, because biological learning continues to outperform machine learning algorithms on certain OOD challenges, we discuss the limitations of this framework vis-\'a-vis its ability to formalize biological learning, suggesting multiple avenues for future research.
Next-generation communication technology will be fueled on the cooperation of terrestrial networks with nonterrestrial networks (NTNs) that contain mega-constellations of high-altitude platform stations and low-Earth orbit satellites. On the other hand, humanity has embarked on a long road to establish new habitats on other planets. This deems the cooperation of NTNs with deep space networks (DSNs) necessary. In this regard, we propose the use of reconfigurable intelligent surfaces (RISs) to improve and escalate this collaboration owing to the fact that they perfectly match with the size, weight, and power restrictions of the operational environment of space. A comprehensive framework of RIS-assisted non-terrestrial and interplanetary communications is presented by pinpointing challenges, use cases, and open issues. Furthermore, the performance of RIS-assisted NTNs under environmental effects such as solar scintillation and satellite drag is discussed through simulation results.
Federated Learning aims to learn machine learning models from multiple decentralized edge devices (e.g. mobiles) or servers without sacrificing local data privacy. Recent Natural Language Processing techniques rely on deep learning and large pre-trained language models. However, both big deep neural and language models are trained with huge amounts of data which often lies on the server side. Since text data is widely originated from end users, in this work, we look into recent NLP models and techniques which use federated learning as the learning framework. Our survey discusses major challenges in federated natural language processing, including the algorithm challenges, system challenges as well as the privacy issues. We also provide a critical review of the existing Federated NLP evaluation methods and tools. Finally, we highlight the current research gaps and future directions.
3D Morphable Model (3DMM) based methods have achieved great success in recovering 3D face shapes from single-view images. However, the facial textures recovered by such methods lack the fidelity as exhibited in the input images. Recent work demonstrates high-quality facial texture recovering with generative networks trained from a large-scale database of high-resolution UV maps of face textures, which is hard to prepare and not publicly available. In this paper, we introduce a method to reconstruct 3D facial shapes with high-fidelity textures from single-view images in-the-wild, without the need to capture a large-scale face texture database. The main idea is to refine the initial texture generated by a 3DMM based method with facial details from the input image. To this end, we propose to use graph convolutional networks to reconstruct the detailed colors for the mesh vertices instead of reconstructing the UV map. Experiments show that our method can generate high-quality results and outperforms state-of-the-art methods in both qualitative and quantitative comparisons.
The demand for artificial intelligence has grown significantly over the last decade and this growth has been fueled by advances in machine learning techniques and the ability to leverage hardware acceleration. However, in order to increase the quality of predictions and render machine learning solutions feasible for more complex applications, a substantial amount of training data is required. Although small machine learning models can be trained with modest amounts of data, the input for training larger models such as neural networks grows exponentially with the number of parameters. Since the demand for processing training data has outpaced the increase in computation power of computing machinery, there is a need for distributing the machine learning workload across multiple machines, and turning the centralized into a distributed system. These distributed systems present new challenges, first and foremost the efficient parallelization of the training process and the creation of a coherent model. This article provides an extensive overview of the current state-of-the-art in the field by outlining the challenges and opportunities of distributed machine learning over conventional (centralized) machine learning, discussing the techniques used for distributed machine learning, and providing an overview of the systems that are available.
Over the last several years, the field of natural language processing has been propelled forward by an explosion in the use of deep learning models. This survey provides a brief introduction to the field and a quick overview of deep learning architectures and methods. It then sifts through the plethora of recent studies and summarizes a large assortment of relevant contributions. Analyzed research areas include several core linguistic processing issues in addition to a number of applications of computational linguistics. A discussion of the current state of the art is then provided along with recommendations for future research in the field.
In this study, we investigate the limits of the current state of the art AI system for detecting buffer overflows and compare it with current static analysis tools. To do so, we developed a code generator, s-bAbI, capable of producing an arbitrarily large number of code samples of controlled complexity. We found that the static analysis engines we examined have good precision, but poor recall on this dataset, except for a sound static analyzer that has good precision and recall. We found that the state of the art AI system, a memory network modeled after Choi et al. [1], can achieve similar performance to the static analysis engines, but requires an exhaustive amount of training data in order to do so. Our work points towards future approaches that may solve these problems; namely, using representations of code that can capture appropriate scope information and using deep learning methods that are able to perform arithmetic operations.
Clustering is an essential data mining tool that aims to discover inherent cluster structure in data. For most applications, applying clustering is only appropriate when cluster structure is present. As such, the study of clusterability, which evaluates whether data possesses such structure, is an integral part of cluster analysis. However, methods for evaluating clusterability vary radically, making it challenging to select a suitable measure. In this paper, we perform an extensive comparison of measures of clusterability and provide guidelines that clustering users can reference to select suitable measures for their applications.
Sections are the building blocks of Wikipedia articles. They enhance readability and can be used as a structured entry point for creating and expanding articles. Structuring a new or already existing Wikipedia article with sections is a hard task for humans, especially for newcomers or less experienced editors, as it requires significant knowledge about how a well-written article looks for each possible topic. Inspired by this need, the present paper defines the problem of section recommendation for Wikipedia articles and proposes several approaches for tackling it. Our systems can help editors by recommending what sections to add to already existing or newly created Wikipedia articles. Our basic paradigm is to generate recommendations by sourcing sections from articles that are similar to the input article. We explore several ways of defining similarity for this purpose (based on topic modeling, collaborative filtering, and Wikipedia's category system). We use both automatic and human evaluation approaches for assessing the performance of our recommendation system, concluding that the category--based approach works best, achieving precision and recall at 10 of about 80\% in the crowdsourcing evaluation.