Learning unsupervised world models for autonomous driving has the potential to improve the reasoning capabilities of today's systems dramatically. However, most work neglects the physical attributes of the world and focuses on sensor data alone. We propose MUVO, a MUltimodal World Model with Geometric VOxel Representations to address this challenge. We utilize raw camera and lidar data to learn a sensor-agnostic geometric representation of the world, which can directly be used by downstream tasks, such as planning. We demonstrate multimodal future predictions and show that our geometric representation improves the prediction quality of both camera images and lidar point clouds.
Understanding model's sensitivity to its training data is crucial but can also be challenging and costly, especially during training. To simplify such issues, we present the Memory-Perturbation Equation (MPE) which relates model's sensitivity to perturbation in its training data. Derived using Bayesian principles, the MPE unifies existing sensitivity measures, generalizes them to a wide-variety of models and algorithms, and unravels useful properties regarding sensitivities. Our empirical results show that sensitivity estimates obtained during training can be used to faithfully predict generalization on unseen test data. The proposed equation is expected to be useful for future research on robust and adaptive learning.
Although diffusion models in text-to-speech have become a popular choice due to their strong generative ability, the intrinsic complexity of sampling from diffusion models harms their efficiency. Alternatively, we propose VoiceFlow, an acoustic model that utilizes a rectified flow matching algorithm to achieve high synthesis quality with a limited number of sampling steps. VoiceFlow formulates the process of generating mel-spectrograms into an ordinary differential equation conditional on text inputs, whose vector field is then estimated. The rectified flow technique then effectively straightens its sampling trajectory for efficient synthesis. Subjective and objective evaluations on both single and multi-speaker corpora showed the superior synthesis quality of VoiceFlow compared to the diffusion counterpart. Ablation studies further verified the validity of the rectified flow technique in VoiceFlow.
Existing unsupervised deep product quantization methods primarily aim for the increased similarity between different views of the identical image, whereas the delicate multi-level semantic similarities preserved between images are overlooked. Moreover, these methods predominantly focus on the Euclidean space for computational convenience, compromising their ability to map the multi-level semantic relationships between images effectively. To mitigate these shortcomings, we propose a novel unsupervised product quantization method dubbed \textbf{Hi}erarchical \textbf{H}yperbolic \textbf{P}roduct \textbf{Q}uantization (HiHPQ), which learns quantized representations by incorporating hierarchical semantic similarity within hyperbolic geometry. Specifically, we propose a hyperbolic product quantizer, where the hyperbolic codebook attention mechanism and the quantized contrastive learning on the hyperbolic product manifold are introduced to expedite quantization. Furthermore, we propose a hierarchical semantics learning module, designed to enhance the distinction between similar and non-matching images for a query by utilizing the extracted hierarchical semantics as an additional training supervision. Experiments on benchmarks show that our proposed method outperforms state-of-the-art baselines.
Chemistry experimentation is often resource- and labor-intensive. Despite the many benefits incurred by the integration of advanced and special-purpose lab equipment, many aspects of experimentation are still manually conducted by chemists, for example, polishing an electrode in electrochemistry experiments. Traditional lab automation infrastructure faces challenges when it comes to flexibly adapting to new chemistry experiments. To address this issue, we propose a human-friendly and flexible robotic system, ORGANA, that automates a diverse set of chemistry experiments. It is capable of interacting with chemists in the lab through natural language, using Large Language Models (LLMs). ORGANA keeps scientists informed by providing timely reports that incorporate statistical analyses. Additionally, it actively engages with users when necessary for disambiguation or troubleshooting. ORGANA can reason over user input to derive experiment goals, and plan long sequences of both high-level tasks and low-level robot actions while using feedback from the visual perception of the environment. It also supports scheduling and parallel execution for experiments that require resource allocation and coordination between multiple robots and experiment stations. We show that ORGANA successfully conducts a diverse set of chemistry experiments, including solubility assessment, pH measurement, recrystallization, and electrochemistry experiments. For the latter, we show that ORGANA robustly executes a long-horizon plan, comprising 19 steps executed in parallel, to characterize the electrochemical properties of quinone derivatives, a class of molecules used in rechargeable flow batteries. Our user study indicates that ORGANA significantly improves many aspects of user experience while reducing their physical workload. More details about ORGANA can be found at //ac-rad.github.io/organa/.
Inspecting the information encoded in hidden representations of large language models (LLMs) can explain models' behavior and verify their alignment with human values. Given the capabilities of LLMs in generating human-understandable text, we propose leveraging the model itself to explain its internal representations in natural language. We introduce a framework called Patchscopes and show how it can be used to answer a wide range of questions about an LLM's computation. We show that prior interpretability methods based on projecting representations into the vocabulary space and intervening on the LLM computation can be viewed as instances of this framework. Moreover, several of their shortcomings such as failure in inspecting early layers or lack of expressivity can be mitigated by Patchscopes. Beyond unifying prior inspection techniques, Patchscopes also opens up new possibilities such as using a more capable model to explain the representations of a smaller model, and unlocks new applications such as self-correction in multi-hop reasoning.
Recent zero-shot evaluations have highlighted important limitations in the abilities of language models (LMs) to perform meaning extraction. However, it is now well known that LMs can demonstrate radical improvements in the presence of experimental contexts such as in-context examples and instructions. How well does this translate to previously studied meaning-sensitive tasks? We present a case-study on the extent to which experimental contexts can improve LMs' robustness in performing property inheritance -- predicting semantic properties of novel concepts, a task that they have been previously shown to fail on. Upon carefully controlling the nature of the in-context examples and the instructions, our work reveals that they can indeed lead to non-trivial property inheritance behavior in LMs. However, this ability is inconsistent: with a minimal reformulation of the task, some LMs were found to pick up on shallow, non-semantic heuristics from their inputs, suggesting that the computational principles of semantic property inference are yet to be mastered by LMs.
Large Language Models (LLMs) have emerged as a pivotal force in language technology. Their robust reasoning capabilities and expansive knowledge repositories have enabled exceptional zero-shot generalization abilities across various facets of the natural language processing field, including information retrieval (IR). In this paper, we conduct an in-depth investigation into the utility of documents generated by LLMs for IR. We introduce a simple yet effective framework, Multi-Text Generation Integration (MuGI), to augment existing IR methodologies. Specifically, we prompt LLMs to generate multiple pseudo references and integrate with query for retrieval. The training-free MuGI model eclipses existing query expansion strategies, setting a new standard in sparse retrieval. It outstrips supervised counterparts like ANCE and DPR, achieving a notable over 18% enhancement in BM25 on the TREC DL dataset and a 7.5% increase on BEIR. Through MuGI, we have forged a rapid and high-fidelity re-ranking pipeline. This allows a relatively small 110M parameter retriever to surpass the performance of larger 3B models in in-domain evaluations, while also bridging the gap in out-of-distribution situations. We release our code and all generated references at //github.com/lezhang7/Retrieval_MuGI.
This article presents the affordances that Generative Artificial Intelligence can have in disinformation context, one of the major threats to our digitalized society. We present a research framework to generate customized agent-based social networks for disinformation simulations that would enable understanding and evaluation of the phenomena whilst discussing open challenges.
Diffusion models (DMs) have shown great potential for high-quality image synthesis. However, when it comes to producing images with complex scenes, how to properly describe both image global structures and object details remains a challenging task. In this paper, we present Frido, a Feature Pyramid Diffusion model performing a multi-scale coarse-to-fine denoising process for image synthesis. Our model decomposes an input image into scale-dependent vector quantized features, followed by a coarse-to-fine gating for producing image output. During the above multi-scale representation learning stage, additional input conditions like text, scene graph, or image layout can be further exploited. Thus, Frido can be also applied for conditional or cross-modality image synthesis. We conduct extensive experiments over various unconditioned and conditional image generation tasks, ranging from text-to-image synthesis, layout-to-image, scene-graph-to-image, to label-to-image. More specifically, we achieved state-of-the-art FID scores on five benchmarks, namely layout-to-image on COCO and OpenImages, scene-graph-to-image on COCO and Visual Genome, and label-to-image on COCO. Code is available at //github.com/davidhalladay/Frido.
Detecting carried objects is one of the requirements for developing systems to reason about activities involving people and objects. We present an approach to detect carried objects from a single video frame with a novel method that incorporates features from multiple scales. Initially, a foreground mask in a video frame is segmented into multi-scale superpixels. Then the human-like regions in the segmented area are identified by matching a set of extracted features from superpixels against learned features in a codebook. A carried object probability map is generated using the complement of the matching probabilities of superpixels to human-like regions and background information. A group of superpixels with high carried object probability and strong edge support is then merged to obtain the shape of the carried object. We applied our method to two challenging datasets, and results show that our method is competitive with or better than the state-of-the-art.