亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Despite recent progress in reinforcement learning (RL) from raw pixel data, sample inefficiency continues to present a substantial obstacle. Prior works have attempted to address this challenge by creating self-supervised auxiliary tasks, aiming to enrich the agent's learned representations with control-relevant information for future state prediction. However, these objectives are often insufficient to learn representations that can represent the optimal policy or value function, and they often consider tasks with small, abstract discrete action spaces and thus overlook the importance of action representation learning in continuous control. In this paper, we introduce TACO: Temporal Action-driven Contrastive Learning, a simple yet powerful temporal contrastive learning approach that facilitates the concurrent acquisition of latent state and action representations for agents. TACO simultaneously learns a state and an action representation by optimizing the mutual information between representations of current states paired with action sequences and representations of the corresponding future states. Theoretically, TACO can be shown to learn state and action representations that encompass sufficient information for control, thereby improving sample efficiency. For online RL, TACO achieves 40% performance boost after one million environment interaction steps on average across nine challenging visual continuous control tasks from Deepmind Control Suite. In addition, we show that TACO can also serve as a plug-and-play module adding to existing offline visual RL methods to establish the new state-of-the-art performance for offline visual RL across offline datasets with varying quality.

相關內容

TACO:ACM Transactions on Architecture and Code Optimization。 Explanation:架構和代碼優化的ACM事務。 Publisher:ACM。 SIT:

Albeit great performance of Transformer-based speech selfsupervised learning (SSL) models, their large parameter size and computational cost make them unfavorable to utilize. In this study, we propose to compress the speech SSL models by distilling speech temporal relation (STaR). Unlike previous works that directly match the representation for each speech frame, STaR distillation transfers temporal relation between speech frames, which is more suitable for lightweight student with limited capacity. We explore three STaR distillation objectives and select the best combination as the final STaR loss. Our model distilled from HuBERT BASE achieves an overall score of 79.8 on SUPERB benchmark, the best performance among models with up to 27 million parameters. We show that our method is applicable across different speech SSL models and maintains robust performance with further reduced parameters.

We introduce a Depicted image Quality Assessment method (DepictQA), overcoming the constraints of traditional score-based approaches. DepictQA leverages Multi-modal Large Language Models (MLLMs), allowing for detailed, language-based, human-like evaluation of image quality. Unlike conventional Image Quality Assessment (IQA) methods relying on scores, DepictQA interprets image content and distortions descriptively and comparatively, aligning closely with humans' reasoning process. To build the DepictQA model, we establish a hierarchical task framework, and collect a multi-modal IQA training dataset, named M-BAPPS. To navigate the challenges in limited training data and processing multiple images, we propose to use multi-source training data and specialized image tags. Our DepictQA demonstrates a better performance than score-based methods on the BAPPS benchmark. Moreover, compared with general MLLMs, our DepictQA can generate more accurate reasoning descriptive languages. Our research indicates that language-based IQA methods have the potential to be customized for individual preferences. Datasets and codes will be released publicly.

Multi-object tracking (MOT) in video sequences remains a challenging task, especially in scenarios with significant camera movements. This is because targets can drift considerably on the image plane, leading to erroneous tracking outcomes. Addressing such challenges typically requires supplementary appearance cues or Camera Motion Compensation (CMC). While these strategies are effective, they also introduce a considerable computational burden, posing challenges for real-time MOT. In response to this, we introduce UCMCTrack, a novel motion model-based tracker robust to camera movements. Unlike conventional CMC that computes compensation parameters frame-by-frame, UCMCTrack consistently applies the same compensation parameters throughout a video sequence. It employs a Kalman filter on the ground plane and introduces the Mapped Mahalanobis Distance (MMD) as an alternative to the traditional Intersection over Union (IoU) distance measure. By leveraging projected probability distributions on the ground plane, our approach efficiently captures motion patterns and adeptly manages uncertainties introduced by homography projections. Remarkably, UCMCTrack, relying solely on motion cues, achieves state-of-the-art performance across a variety of challenging datasets, including MOT17, MOT20, DanceTrack and KITTI, with an exceptional speed of over 1000 FPS on a single CPU. More details and code are available at //github.com/corfyi/UCMCTrack

Graph partitioning plays a pivotal role in various distributed graph processing applications, including graph analytics, graph neural network training, and distributed graph databases. Graphs that require distributed settings are often too large to fit in the main memory of a single machine. This challenge renders traditional in-memory graph partitioners infeasible, leading to the emergence of streaming solutions. Streaming partitioners produce lower-quality partitions because they work from partial information and must make premature decisions before they have a complete view of a vertex's neighborhood. We introduce CUTTANA, a streaming graph partitioner that partitions massive graphs (Web/Twitter scale) with superior quality compared to existing streaming solutions. CUTTANA uses a novel buffering technique that prevents the premature assignment of vertices to partitions and a scalable coarsening and refinement technique that enables a complete graph view, improving the intermediate assignment made by a streaming partitioner. We implemented a parallel version for CUTTANA that offers nearly the same partitioning latency as existing streaming partitioners. Our experimental analysis shows that CUTTANA consistently yields better partitioning quality than existing state-of-the-art streaming vertex partitioners in terms of both edge-cut and communication volume metrics. We also evaluate the workload latencies that result from using CUTTANA and other partitioners in distributed graph analytics and databases. CUTTANA outperforms the other methods in most scenarios (algorithms, datasets). In analytics applications, CUTTANA improves runtime performance by up to 59% compared to various streaming partitioners (HDRF, Fennel, Ginger, HeiStream). In graph database tasks, CUTTANA results in higher query throughput by up to 23%, without hurting tail latency.

Machine learning (ML) models are fundamentally shaped by data, and building inclusive ML systems requires significant considerations around how to design representative datasets. Yet, few novice-oriented ML modeling tools are designed to foster hands-on learning of dataset design practices, including how to design for data diversity and inspect for data quality. To this end, we outline a set of four data design practices (DDPs) for designing inclusive ML models and share how we designed a tablet-based application called Co-ML to foster learning of DDPs through a collaborative ML model building experience. With Co-ML, beginners can build image classifiers through a distributed experience where data is synchronized across multiple devices, enabling multiple users to iteratively refine ML datasets in discussion and coordination with their peers. We deployed Co-ML in a 2-week-long educational AIML Summer Camp, where youth ages 13-18 worked in groups to build custom ML-powered mobile applications. Our analysis reveals how multi-user model building with Co-ML, in the context of student-driven projects created during the summer camp, supported development of DDPs including incorporating data diversity, evaluating model performance, and inspecting for data quality. Additionally, we found that students' attempts to improve model performance often prioritized learnability over class balance. Through this work, we highlight how the combination of collaboration, model testing interfaces, and student-driven projects can empower learners to actively engage in exploring the role of data in ML systems.

With the success of pre-trained visual-language (VL) models such as CLIP in visual representation tasks, transferring pre-trained models to downstream tasks has become a crucial paradigm. Recently, the prompt tuning paradigm, which draws inspiration from natural language processing (NLP), has made significant progress in VL field. However, preceding methods mainly focus on constructing prompt templates for text and visual inputs, neglecting the gap in class label representations between the VL models and downstream tasks. To address this challenge, we introduce an innovative label alignment method named \textbf{LAMM}, which can dynamically adjust the category embeddings of downstream datasets through end-to-end training. Moreover, to achieve a more appropriate label distribution, we propose a hierarchical loss, encompassing the alignment of the parameter space, feature space, and logits space. We conduct experiments on 11 downstream vision datasets and demonstrate that our method significantly improves the performance of existing multi-modal prompt learning models in few-shot scenarios, exhibiting an average accuracy improvement of 2.31(\%) compared to the state-of-the-art methods on 16 shots. Moreover, our methodology exhibits the preeminence in continual learning compared to other prompt tuning methods. Importantly, our method is synergistic with existing prompt tuning methods and can boost the performance on top of them. Our code and dataset will be publicly available at //github.com/gaojingsheng/LAMM.

Self-supervised learning (SSL) for RGB images has achieved significant success, yet there is still limited research on SSL for infrared images, primarily due to three prominent challenges: 1) the lack of a suitable large-scale infrared pre-training dataset, 2) the distinctiveness of non-iconic infrared images rendering common pre-training tasks like masked image modeling (MIM) less effective, and 3) the scarcity of fine-grained textures making it particularly challenging to learn general image features. To address these issues, we construct a Multi-Scene Infrared Pre-training (MSIP) dataset comprising 178,756 images, and introduce object-sensitive random RoI cropping, an image preprocessing method, to tackle the challenge posed by non-iconic images. To alleviate the impact of weak textures on feature learning, we propose a pre-training paradigm called Pre-training with ADapter (PAD), which uses adapters to learn domain-specific features while freezing parameters pre-trained on ImageNet to retain the general feature extraction capability. This new paradigm is applicable to any transformer-based SSL method. Furthermore, to achieve more flexible coordination between pre-trained and newly-learned features in different layers and patches, a patchwise-scale adapter with dynamically learnable scale factors is introduced. Extensive experiments on three downstream tasks show that PAD, with only 1.23M pre-trainable parameters, outperforms other baseline paradigms including continual full pre-training on MSIP. Our code and dataset are available at //github.com/casiatao/PAD.

We present DrivingGaussian, an efficient and effective framework for surrounding dynamic autonomous driving scenes. For complex scenes with moving objects, we first sequentially and progressively model the static background of the entire scene with incremental static 3D Gaussians. We then leverage a composite dynamic Gaussian graph to handle multiple moving objects, individually reconstructing each object and restoring their accurate positions and occlusion relationships within the scene. We further use a LiDAR prior for Gaussian Splatting to reconstruct scenes with greater details and maintain panoramic consistency. DrivingGaussian outperforms existing methods in driving scene reconstruction and enables photorealistic surround-view synthesis with high-fidelity and multi-camera consistency. The source code and trained models will be released.

Existing few-shot learning (FSL) methods assume that there exist sufficient training samples from source classes for knowledge transfer to target classes with few training samples. However, this assumption is often invalid, especially when it comes to fine-grained recognition. In this work, we define a new FSL setting termed few-shot fewshot learning (FSFSL), under which both the source and target classes have limited training samples. To overcome the source class data scarcity problem, a natural option is to crawl images from the web with class names as search keywords. However, the crawled images are inevitably corrupted by large amount of noise (irrelevant images) and thus may harm the performance. To address this problem, we propose a graph convolutional network (GCN)-based label denoising (LDN) method to remove the irrelevant images. Further, with the cleaned web images as well as the original clean training images, we propose a GCN-based FSL method. For both the LDN and FSL tasks, a novel adaptive aggregation GCN (AdarGCN) model is proposed, which differs from existing GCN models in that adaptive aggregation is performed based on a multi-head multi-level aggregation module. With AdarGCN, how much and how far information carried by each graph node is propagated in the graph structure can be determined automatically, therefore alleviating the effects of both noisy and outlying training samples. Extensive experiments show the superior performance of our AdarGCN under both the new FSFSL and the conventional FSL settings.

Language model pre-training, such as BERT, has significantly improved the performances of many natural language processing tasks. However, pre-trained language models are usually computationally expensive and memory intensive, so it is difficult to effectively execute them on some resource-restricted devices. To accelerate inference and reduce model size while maintaining accuracy, we firstly propose a novel transformer distillation method that is a specially designed knowledge distillation (KD) method for transformer-based models. By leveraging this new KD method, the plenty of knowledge encoded in a large teacher BERT can be well transferred to a small student TinyBERT. Moreover, we introduce a new two-stage learning framework for TinyBERT, which performs transformer distillation at both the pre-training and task-specific learning stages. This framework ensures that TinyBERT can capture both the general-domain and task-specific knowledge of the teacher BERT. TinyBERT is empirically effective and achieves comparable results with BERT in GLUE datasets, while being 7.5x smaller and 9.4x faster on inference. TinyBERT is also significantly better than state-of-the-art baselines, even with only about 28% parameters and 31% inference time of baselines.

北京阿比特科技有限公司