亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

So-called "classification trimmed likelihood curves" have been proposed as a useful heuristic tool to determine the number of clusters and trimming proportion in trimming-based robust clustering methods. However, these curves needs a careful visual inspection, and this way of choosing parameters requires subjective decisions. This work is intended to provide theoretical background for the understanding of these curves and the elements involved in their derivation. Moreover, a parametric bootstrap approach is presented in order to automatize the choice of parameter more by providing a reduced list of "sensible" choices for the parameters. The user can then pick a solution that fits their aims from that reduced list.

相關內容

The joint analysis of multimodal neuroimaging data is critical in the field of brain research because it reveals complex interactive relationships between neurobiological structures and functions. In this study, we focus on investigating the effects of structural imaging (SI) features, including white matter micro-structure integrity (WMMI) and cortical thickness, on the whole brain functional connectome (FC) network. To achieve this goal, we propose a network-based vector-on-matrix regression model to characterize the FC-SI association patterns. We have developed a novel multi-level dense bipartite and clique subgraph extraction method to identify which subsets of spatially specific SI features intensively influence organized FC sub-networks. The proposed method can simultaneously identify highly correlated structural-connectomic association patterns and suppress false positive findings while handling millions of potential interactions. We apply our method to a multimodal neuroimaging dataset of 4,242 participants from the UK Biobank to evaluate the effects of whole-brain WMMI and cortical thickness on the resting-state FC. The results reveal that the WMMI on corticospinal tracts and inferior cerebellar peduncle significantly affect functional connections of sensorimotor, salience, and executive sub-networks with an average correlation of 0.81 (p<0.001).

Causal representation learning algorithms discover lower-dimensional representations of data that admit a decipherable interpretation of cause and effect; as achieving such interpretable representations is challenging, many causal learning algorithms utilize elements indicating prior information, such as (linear) structural causal models, interventional data, or weak supervision. Unfortunately, in exploratory causal representation learning, such elements and prior information may not be available or warranted. Alternatively, scientific datasets often have multiple modalities or physics-based constraints, and the use of such scientific, multimodal data has been shown to improve disentanglement in fully unsupervised settings. Consequently, we introduce a causal representation learning algorithm (causalPIMA) that can use multimodal data and known physics to discover important features with causal relationships. Our innovative algorithm utilizes a new differentiable parametrization to learn a directed acyclic graph (DAG) together with a latent space of a variational autoencoder in an end-to-end differentiable framework via a single, tractable evidence lower bound loss function. We place a Gaussian mixture prior on the latent space and identify each of the mixtures with an outcome of the DAG nodes; this novel identification enables feature discovery with causal relationships. Tested against a synthetic and a scientific dataset, our results demonstrate the capability of learning an interpretable causal structure while simultaneously discovering key features in a fully unsupervised setting.

Since their initial introduction, score-based diffusion models (SDMs) have been successfully applied to solve a variety of linear inverse problems in finite-dimensional vector spaces due to their ability to efficiently approximate the posterior distribution. However, using SDMs for inverse problems in infinite-dimensional function spaces has only been addressed recently, primarily through methods that learn the unconditional score. While this approach is advantageous for some inverse problems, it is mostly heuristic and involves numerous computationally costly forward operator evaluations during posterior sampling. To address these limitations, we propose a theoretically grounded method for sampling from the posterior of infinite-dimensional Bayesian linear inverse problems based on amortized conditional SDMs. In particular, we prove that one of the most successful approaches for estimating the conditional score in finite dimensions - the conditional denoising estimator - can also be applied in infinite dimensions. A significant part of our analysis is dedicated to demonstrating that extending infinite-dimensional SDMs to the conditional setting requires careful consideration, as the conditional score typically blows up for small times, contrarily to the unconditional score. We conclude by presenting stylized and large-scale numerical examples that validate our approach, offer additional insights, and demonstrate that our method enables large-scale, discretization-invariant Bayesian inference.

This work presents a comparative study to numerically compute impulse approximate controls for parabolic equations with various boundary conditions. Theoretical controllability results have been recently investigated using a logarithmic convexity estimate at a single time based on a Carleman commutator approach. We propose a numerical algorithm for computing the impulse controls with minimal $L^2$-norms by adapting a penalized Hilbert Uniqueness Method (HUM) combined with a Conjugate Gradient (CG) method. We consider static boundary conditions (Dirichlet and Neumann) and dynamic boundary conditions. Some numerical experiments based on our developed algorithm are given to validate and compare the theoretical impulse controllability results.

Neurons in early sensory areas rapidly adapt to changing sensory statistics, both by normalizing the variance of their individual responses and by reducing correlations between their responses. Together, these transformations may be viewed as an adaptive form of statistical whitening. Existing mechanistic models of adaptive whitening exclusively use either synaptic plasticity or gain modulation as the biological substrate for adaptation; however, on their own, each of these models has significant limitations. In this work, we unify these approaches in a normative multi-timescale mechanistic model that adaptively whitens its responses with complementary computational roles for synaptic plasticity and gain modulation. Gains are modified on a fast timescale to adapt to the current statistical context, whereas synapses are modified on a slow timescale to match structural properties of the input statistics that are invariant across contexts. Our model is derived from a novel multi-timescale whitening objective that factorizes the inverse whitening matrix into basis vectors, which correspond to synaptic weights, and a diagonal matrix, which corresponds to neuronal gains. We test our model on synthetic and natural datasets and find that the synapses learn optimal configurations over long timescales that enable adaptive whitening on short timescales using gain modulation.

Generative diffusion models have achieved spectacular performance in many areas of generative modeling. While the fundamental ideas behind these models come from non-equilibrium physics, in this paper we show that many aspects of these models can be understood using the tools of equilibrium statistical mechanics. Using this reformulation, we show that generative diffusion models undergo second-order phase transitions corresponding to symmetry breaking phenomena. We argue that this lead to a form of instability that lies at the heart of their generative capabilities and that can be described by a set of mean field critical exponents. We conclude by analyzing recent work connecting diffusion models and associative memory networks in view of the thermodynamic formulations.

We address speech enhancement based on variational autoencoders, which involves learning a speech prior distribution in the time-frequency (TF) domain. A zero-mean complex-valued Gaussian distribution is usually assumed for the generative model, where the speech information is encoded in the variance as a function of a latent variable. In contrast to this commonly used approach, we propose a weighted variance generative model, where the contribution of each spectrogram time-frame in parameter learning is weighted. We impose a Gamma prior distribution on the weights, which would effectively lead to a Student's t-distribution instead of Gaussian for speech generative modeling. We develop efficient training and speech enhancement algorithms based on the proposed generative model. Our experimental results on spectrogram auto-encoding and speech enhancement demonstrate the effectiveness and robustness of the proposed approach compared to the standard unweighted variance model.

The success of over-parameterized neural networks trained to near-zero training error has caused great interest in the phenomenon of benign overfitting, where estimators are statistically consistent even though they interpolate noisy training data. While benign overfitting in fixed dimension has been established for some learning methods, current literature suggests that for regression with typical kernel methods and wide neural networks, benign overfitting requires a high-dimensional setting where the dimension grows with the sample size. In this paper, we show that the smoothness of the estimators, and not the dimension, is the key: benign overfitting is possible if and only if the estimator's derivatives are large enough. We generalize existing inconsistency results to non-interpolating models and more kernels to show that benign overfitting with moderate derivatives is impossible in fixed dimension. Conversely, we show that rate-optimal benign overfitting is possible for regression with a sequence of spiky-smooth kernels with large derivatives. Using neural tangent kernels, we translate our results to wide neural networks. We prove that while infinite-width networks do not overfit benignly with the ReLU activation, this can be fixed by adding small high-frequency fluctuations to the activation function. Our experiments verify that such neural networks, while overfitting, can indeed generalize well even on low-dimensional data sets.

Infinite-dimensional, holomorphic functions have been studied in detail over the last several decades, due to their relevance to parametric differential equations and computational uncertainty quantification. The approximation of such functions from finitely many samples is of particular interest, due to the practical importance of constructing surrogate models to complex mathematical models of physical processes. In a previous work, [5] we studied the approximation of so-called Banach-valued, $(\boldsymbol{b},\varepsilon)$-holomorphic functions on the infinite-dimensional hypercube $[-1,1]^{\mathbb{N}}$ from $m$ (potentially adaptive) samples. In particular, we derived lower bounds for the adaptive $m$-widths for classes of such functions, which showed that certain algebraic rates of the form $m^{1/2-1/p}$ are the best possible regardless of the sampling-recovery pair. In this work, we continue this investigation by focusing on the practical case where the samples are pointwise evaluations drawn identically and independently from a probability measure. Specifically, for Hilbert-valued $(\boldsymbol{b},\varepsilon)$-holomorphic functions, we show that the same rates can be achieved (up to a small polylogarithmic or algebraic factor) for essentially arbitrary tensor-product Jacobi (ultraspherical) measures. Our reconstruction maps are based on least squares and compressed sensing procedures using the corresponding orthonormal Jacobi polynomials. In doing so, we strengthen and generalize past work that has derived weaker nonuniform guarantees for the uniform and Chebyshev measures (and corresponding polynomials) only. We also extend various best $s$-term polynomial approximation error bounds to arbitrary Jacobi polynomial expansions. Overall, we demonstrate that i.i.d.\ pointwise samples are near-optimal for the recovery of infinite-dimensional, holomorphic functions.

We propose novel optimal and parameter-free algorithms for computing an approximate solution for smooth optimization with small (projected) gradient norm. Specifically, for computing an approximate solution such that the norm of the (projected) gradient is not greater than $\varepsilon$, we have the following results for the cases of convex, strongly convex, and nonconvex problems: a) for the convex case, the total number of gradient evaluations is bounded by $O(1)\sqrt{L\|x_0 - x^*\|\varepsilon}$, where $L$ is the Lipschitz constant of the gradient function and $x^*$ is any optimal solution; b) for the strongly convex case, the total number of gradient evaluations is bounded by $O(1)\sqrt{L/\mu}\log(\|\nabla f(x_0)\|)$, where $\mu$ is the strong convexity constant; c) for the nonconvex case, the total number of gradient evaluations is bounded by $O(1)\sqrt{Ll}(f(x_0) - f(x^*))/\varepsilon^2$, where $l$ is the lower curvature constant. Our complexity results match the lower complexity bounds of all three cases of problems. Our analysis can be applied to both unconstrained problems and problems with constrained feasible sets; we demonstrate our strategy for analyzing the complexity of computing solutions with small projected gradient norm in the convex case. For all the convex, strongly convex, and nonconvex cases, we also propose parameter-free algorithms that does not require the knowledge of any problem parameter. To the best of our knowledge, our paper is the first one that achieves the $O(1)\sqrt{L\|x_0 - x^*\|/\varepsilon}$ complexity for convex problems with constraint feasible sets, the $O(1)\sqrt{Ll}(f(x_0) - f(x^*))/\varepsilon$ complexity for nonconvex problems, and optimal complexities for convex, strongly convex, and nonconvex problems through parameter-free algorithms.

北京阿比特科技有限公司