Logics with analogous semantics, such as Fuzzy Logic, have a number of explanatory and application advantages, the most well-known being the ability to help experts develop control systems. From a cognitive systems perspective, such languages also have the advantage of being grounded in perception. For social decision making in humans, it is vital that logical conclusions about others (cognitive empathy) are grounded in empathic emotion (affective empathy). Classical Fuzzy Logic, however, has several disadvantages: it is not obvious how complex formulae, e.g., the description of events in a text, can be (a) formed, (b) grounded, and (c) used in logical reasoning. The two-layered Context Logic (CL) was designed to address these issue. Formally based on a lattice semantics, like classical Fuzzy Logic, CL also features an analogous semantics for complex fomulae. With the Activation Bit Vector Machine (ABVM), it has a simple and classical logical reasoning mechanism with an inherent imagery process based on the Vector Symbolic Architecture (VSA) model of distributed neuronal processing. This paper adds to the existing theory how scales, as necessary for adjective and verb semantics can be handled by the system.
The approximate uniform sampling of graph realizations with a given degree sequence is an everyday task in several social science, computer science, engineering etc. projects. One approach is using Markov chains. The best available current result about the well-studied switch Markov chain is that it is rapidly mixing on P-stable degree sequences (see DOI:10.1016/j.ejc.2021.103421). The switch Markov chain does not change any degree sequence. However, there are cases where degree intervals are specified rather than a single degree sequence. (A natural scenario where this problem arises is in hypothesis testing on social networks that are only partially observed.) Rechner, Strowick, and M\"uller-Hannemann introduced in 2018 the notion of degree interval Markov chain which uses three (separately well-studied) local operations (switch, hinge-flip and toggle), and employing on degree sequence realizations where any two sequences under scrutiny have very small coordinate-wise distance. Recently Amanatidis and Kleer published a beautiful paper (arXiv:2110.09068), showing that the degree interval Markov chain is rapidly mixing if the sequences are coming from a system of very thin intervals which are centered not far from a regular degree sequence. In this paper we extend substantially their result, showing that the degree interval Markov chain is rapidly mixing if the intervals are centred at P-stable degree sequences.
We propose a new sheaf semantics for secure information flow over a space of abstract behaviors, based on synthetic domain theory: security classes are open/closed partitions, types are sheaves, and redaction of sensitive information corresponds to restricting a sheaf to a closed subspace. Our security-aware computational model satisfies termination-insensitive noninterference automatically, and therefore constitutes an intrinsic alternative to state of the art extrinsic/relational models of noninterference. Our semantics is the latest application of Sterling and Harper's recent re-interpretation of phase distinctions and noninterference in programming languages in terms of Artin gluing and topos-theoretic open/closed modalities. Prior applications include parametricity for ML modules, the proof of normalization for cubical type theory by Sterling and Angiuli, and the cost-aware logical framework of Niu et al. In this paper we employ the phase distinction perspective twice: first to reconstruct the syntax and semantics of secure information flow as a lattice of phase distinctions between "higher" and "lower" security, and second to verify the computational adequacy of our sheaf semantics vis-\`a-vis an extension of Abadi et al.'s dependency core calculus with a construct for declassifying termination channels.
Machine learning-based methods have achieved successful applications in machinery fault diagnosis. However, the main limitation that exists for these methods is that they operate as a black box and are generally not interpretable. This paper proposes a novel neural network structure, called temporal logic neural network (TLNN), in which the neurons of the network are logic propositions. More importantly, the network can be described and interpreted as a weighted signal temporal logic. TLNN not only keeps the nice properties of traditional neuron networks but also provides a formal interpretation of itself with formal language. Experiments with real datasets show the proposed neural network can obtain highly accurate fault diagnosis results with good computation efficiency. Additionally, the embedded formal language of the neuron network can provide explanations about the decision process, thus achieve interpretable fault diagnosis.
Dynamic topological logic ($\mathbf{DTL}$) is a trimodal logic designed for reasoning about dynamic topological systems. It was shown by Fern\'andez-Duque that the natural set of axioms for $\mathbf{DTL}$ is incomplete, but he provided a complete axiomatisation in an extended language. In this paper, we consider dynamic topological logic over scattered spaces, which are topological spaces where every nonempty subspace has an isolated point. Scattered spaces appear in the context of computational logic as they provide semantics for provability and enjoy definable fixed points. We exhibit the first sound and complete dynamic topological logic in the original trimodal language. In particular, we show that the version of $\mathbf{DTL}$ based on the class of scattered spaces is finitely axiomatisable over the original language, and that the natural axiomatisation is sound and complete.
Category theory can be used to state formulas in First-Order Logic without using set membership. Several notable results in logic such as proof of the continuum hypothesis can be elegantly rewritten in category theory. We propose in this paper a reformulation of the usual set-theoretical semantics of the description logic $\mathcal{ALC}$ by using categorical language. In this setting, ALC concepts are represented as objects, concept subsumptions as arrows, and memberships as logical quantifiers over objects and arrows of categories. Such a category-theoretical semantics provides a more modular representation of the semantics of $\mathcal{ALC}$ and a new way to design algorithms for reasoning.
Many forms of dependence manifest themselves over time, with behavior of variables in dynamical systems as a paradigmatic example. This paper studies temporal dependence in dynamical systems from a logical perspective, by extending a minimal modal base logic of static functional dependencies. We define a logic for dynamical systems with single time steps, provide a complete axiomatic proof calculus, and show the decidability of the satisfiability problem for a substantial fragment. The system comes in two guises: modal and first-order, that naturally complement each other. Next, we consider a timed semantics for our logic, as an intermediate between state spaces and temporal universes for the unfoldings of a dynamical system. We prove completeness and decidability by combining techniques from dynamic-epistemic logic and modal logic of functional dependencies with complex terms for objects. Also, we extend these results to the timed logic with functional symbols and term identity. Finally, we conclude with a brief outlook on how the system proposed here connects with richer temporal logics of system behavior, and with dynamic topological logic.
We recall some of the history of the information-theoretic approach to deriving core results in probability theory and indicate parts of the recent resurgence of interest in this area with current progress along several interesting directions. Then we give a new information-theoretic proof of a finite version of de Finetti's classical representation theorem for finite-valued random variables. We derive an upper bound on the relative entropy between the distribution of the first $k$ in a sequence of $n$ exchangeable random variables, and an appropriate mixture over product distributions. The mixing measure is characterised as the law of the empirical measure of the original sequence, and de Finetti's result is recovered as a corollary. The proof is nicely motivated by the Gibbs conditioning principle in connection with statistical mechanics, and it follows along an appealing sequence of steps. The technical estimates required for these steps are obtained via the use of a collection of combinatorial tools known within information theory as `the method of types.'
Alerts are crucial for requesting prompt human intervention upon cloud anomalies. The quality of alerts significantly affects the cloud reliability and the cloud provider's business revenue. In practice, we observe on-call engineers being hindered from quickly locating and fixing faulty cloud services because of the vast existence of misleading, non-informative, non-actionable alerts. We call the ineffectiveness of alerts "anti-patterns of alerts". To better understand the anti-patterns of alerts and provide actionable measures to mitigate anti-patterns, in this paper, we conduct the first empirical study on the practices of mitigating anti-patterns of alerts in an industrial cloud system. We study the alert strategies and the alert processing procedure at Huawei Cloud, a leading cloud provider. Our study combines the quantitative analysis of millions of alerts in two years and a survey with eighteen experienced engineers. As a result, we summarized four individual anti-patterns and two collective anti-patterns of alerts. We also summarize four current reactions to mitigate the anti-patterns of alerts, and the general preventative guidelines for the configuration of alert strategy. Lastly, we propose to explore the automatic evaluation of the Quality of Alerts (QoA), including the indicativeness, precision, and handleability of alerts, as a future research direction that assists in the automatic detection of alerts' anti-patterns. The findings of our study are valuable for optimizing cloud monitoring systems and improving the reliability of cloud services.
Graph Neural Networks (GNNs) are information processing architectures for signals supported on graphs. They are presented here as generalizations of convolutional neural networks (CNNs) in which individual layers contain banks of graph convolutional filters instead of banks of classical convolutional filters. Otherwise, GNNs operate as CNNs. Filters are composed with pointwise nonlinearities and stacked in layers. It is shown that GNN architectures exhibit equivariance to permutation and stability to graph deformations. These properties provide a measure of explanation respecting the good performance of GNNs that can be observed empirically. It is also shown that if graphs converge to a limit object, a graphon, GNNs converge to a corresponding limit object, a graphon neural network. This convergence justifies the transferability of GNNs across networks with different number of nodes.
Most of the internet today is composed of digital media that includes videos and images. With pixels becoming the currency in which most transactions happen on the internet, it is becoming increasingly important to have a way of browsing through this ocean of information with relative ease. YouTube has 400 hours of video uploaded every minute and many million images are browsed on Instagram, Facebook, etc. Inspired by recent advances in the field of deep learning and success that it has gained on various problems like image captioning and, machine translation , word2vec , skip thoughts, etc, we present DeepSeek a natural language processing based deep learning model that allows users to enter a description of the kind of images that they want to search, and in response the system retrieves all the images that semantically and contextually relate to the query. Two approaches are described in the following sections.