Evaluating the quality of generated text is a challenging task in natural language processing. This difficulty arises from the inherent complexity and diversity of text. Recently, OpenAI's ChatGPT, a powerful large language model (LLM), has garnered significant attention due to its impressive performance in various tasks. Therefore, we present this report to investigate the effectiveness of LLMs, especially ChatGPT, and explore ways to optimize their use in assessing text quality. We compared three kinds of reference-free evaluation methods based on ChatGPT or similar LLMs. The experimental results prove that ChatGPT is capable to evaluate text quality effectively from various perspectives without reference and demonstrates superior performance than most existing automatic metrics. In particular, the Explicit Score, which utilizes ChatGPT to generate a numeric score measuring text quality, is the most effective and reliable method among the three exploited approaches. However, directly comparing the quality of two texts using ChatGPT may lead to suboptimal results. We hope this report will provide valuable insights into selecting appropriate methods for evaluating text quality with LLMs such as ChatGPT.
Existing metrics for evaluating the quality of automatically generated questions such as BLEU, ROUGE, BERTScore, and BLEURT compare the reference and predicted questions, providing a high score when there is a considerable lexical overlap or semantic similarity between the candidate and the reference questions. This approach has two major shortcomings. First, we need expensive human-provided reference questions. Second, it penalises valid questions that may not have high lexical or semantic similarity to the reference questions. In this paper, we propose a new metric, RQUGE, based on the answerability of the candidate question given the context. The metric consists of a question-answering and a span scorer modules, using pre-trained models from existing literature, thus it can be used without any further training. We demonstrate that RQUGE has a higher correlation with human judgment without relying on the reference question. Additionally, RQUGE is shown to be more robust to several adversarial corruptions. Furthermore, we illustrate that we can significantly improve the performance of QA models on out-of-domain datasets by fine-tuning on synthetic data generated by a question generation model and re-ranked by RQUGE.
This paper introduces a novel explainable image quality evaluation approach called X-IQE, which leverages visual large language models (LLMs) to evaluate text-to-image generation methods by generating textual explanations. X-IQE utilizes a hierarchical Chain of Thought (CoT) to enable MiniGPT-4 to produce self-consistent, unbiased texts that are highly correlated with human evaluation. It offers several advantages, including the ability to distinguish between real and generated images, evaluate text-image alignment, and assess image aesthetics without requiring model training or fine-tuning. X-IQE is more cost-effective and efficient compared to human evaluation, while significantly enhancing the transparency and explainability of deep image quality evaluation models. We validate the effectiveness of our method as a benchmark using images generated by prevalent diffusion models. X-IQE demonstrates similar performance to state-of-the-art (SOTA) evaluation methods on COCO Caption, while overcoming the limitations of previous evaluation models on DrawBench, particularly in handling ambiguous generation prompts and text recognition in generated images. Project website: //github.com/Schuture/Benchmarking-Awesome-Diffusion-Models
Abstractive summary generation is a challenging task that requires the model to comprehend the source text and generate a concise and coherent summary that captures the essential information. In this paper, we explore the use of an encoder/decoder approach for abstractive summary generation in the Urdu language. We employ a transformer-based model that utilizes self-attention mechanisms to encode the input text and generate a summary. Our experiments show that our model can produce summaries that are grammatically correct and semantically meaningful. We evaluate our model on a publicly available dataset and achieve state-of-the-art results in terms of Rouge scores. We also conduct a qualitative analysis of our model's output to assess its effectiveness and limitations. Our findings suggest that the encoder/decoder approach is a promising method for abstractive summary generation in Urdu and can be extended to other languages with suitable modifications.
Large language models (LLMs) have notably accelerated progress towards artificial general intelligence (AGI), with their impressive zero-shot capacity for user-tailored tasks, endowing them with immense potential across a range of applications. However, in the field of computer vision, despite the availability of numerous powerful vision foundation models (VFMs), they are still restricted to tasks in a pre-defined form, struggling to match the open-ended task capabilities of LLMs. In this work, we present an LLM-based framework for vision-centric tasks, termed VisionLLM. This framework provides a unified perspective for vision and language tasks by treating images as a foreign language and aligning vision-centric tasks with language tasks that can be flexibly defined and managed using language instructions. An LLM-based decoder can then make appropriate predictions based on these instructions for open-ended tasks. Extensive experiments show that the proposed VisionLLM can achieve different levels of task customization through language instructions, from fine-grained object-level to coarse-grained task-level customization, all with good results. It's noteworthy that, with a generalist LLM-based framework, our model can achieve over 60\% mAP on COCO, on par with detection-specific models. We hope this model can set a new baseline for generalist vision and language models. The demo shall be released based on //github.com/OpenGVLab/InternGPT. The code shall be released at //github.com/OpenGVLab/VisionLLM.
Large language models~(LLM) like ChatGPT have become indispensable to artificial general intelligence~(AGI), demonstrating excellent performance in various natural language processing tasks. In the real world, graph data is ubiquitous and an essential part of AGI and prevails in domains like social network analysis, bioinformatics and recommender systems. The training corpus of large language models often includes some algorithmic components, which allows them to achieve certain effects on some graph data-related problems. However, there is still little research on their performance on a broader range of graph-structured data. In this study, we conduct an extensive investigation to assess the proficiency of LLMs in comprehending graph data, employing a diverse range of structural and semantic-related tasks. Our analysis encompasses 10 distinct tasks that evaluate the LLMs' capabilities in graph understanding. Through our study, we not only uncover the current limitations of language models in comprehending graph structures and performing associated reasoning tasks but also emphasize the necessity for further advancements and novel approaches to enhance their graph processing capabilities. Our findings contribute valuable insights towards bridging the gap between language models and graph understanding, paving the way for more effective graph mining and knowledge extraction.
Research on automated text summarization relies heavily on human and automatic evaluation. While recent work on human evaluation mainly adopted intrinsic evaluation methods, judging the generic quality of text summaries, e.g. informativeness and coherence, our work focuses on evaluating the usefulness of text summaries with extrinsic methods. We carefully design three different downstream tasks for extrinsic human evaluation of summaries, i.e., question answering, text classification and text similarity assessment. We carry out experiments using system rankings and user behavior data to evaluate the performance of different summarization models. We find summaries are particularly useful in tasks that rely on an overall judgment of the text, while being less effective for question answering tasks. The results show that summaries generated by fine-tuned models lead to higher consistency in usefulness across all three tasks, as rankings of fine-tuned summarization systems are close across downstream tasks according to the proposed extrinsic metrics. Summaries generated by models in the zero-shot setting, however, are found to be biased towards the text classification and similarity assessment tasks, due to its general and less detailed summary style. We further evaluate the correlation of 14 intrinsic automatic metrics with human criteria and show that intrinsic automatic metrics perform well in evaluating the usefulness of summaries in the question-answering task, but are less effective in the other two tasks. This highlights the limitations of relying solely on intrinsic automatic metrics in evaluating the performance and usefulness of summaries.
We propose a novel methodology (namely, MuLER) that transforms any reference-based evaluation metric for text generation, such as machine translation (MT) into a fine-grained analysis tool. Given a system and a metric, MuLER quantifies how much the chosen metric penalizes specific error types (e.g., errors in translating names of locations). MuLER thus enables a detailed error analysis which can lead to targeted improvement efforts for specific phenomena. We perform experiments in both synthetic and naturalistic settings to support MuLER's validity and showcase its usability in MT evaluation, and other tasks, such as summarization. Analyzing all submissions to WMT in 2014-2020, we find consistent trends. For example, nouns and verbs are among the most frequent POS tags. However, they are among the hardest to translate. Performance on most POS tags improves with overall system performance, but a few are not thus correlated (their identity changes from language to language). Preliminary experiments with summarization reveal similar trends.
This paper offers a comprehensive review of the research on Natural Language Generation (NLG) over the past two decades, especially in relation to data-to-text generation and text-to-text generation deep learning methods, as well as new applications of NLG technology. This survey aims to (a) give the latest synthesis of deep learning research on the NLG core tasks, as well as the architectures adopted in the field; (b) detail meticulously and comprehensively various NLG tasks and datasets, and draw attention to the challenges in NLG evaluation, focusing on different evaluation methods and their relationships; (c) highlight some future emphasis and relatively recent research issues that arise due to the increasing synergy between NLG and other artificial intelligence areas, such as computer vision, text and computational creativity.
The notion of "in-domain data" in NLP is often over-simplistic and vague, as textual data varies in many nuanced linguistic aspects such as topic, style or level of formality. In addition, domain labels are many times unavailable, making it challenging to build domain-specific systems. We show that massive pre-trained language models implicitly learn sentence representations that cluster by domains without supervision -- suggesting a simple data-driven definition of domains in textual data. We harness this property and propose domain data selection methods based on such models, which require only a small set of in-domain monolingual data. We evaluate our data selection methods for neural machine translation across five diverse domains, where they outperform an established approach as measured by both BLEU and by precision and recall of sentence selection with respect to an oracle.
Meta-reinforcement learning algorithms can enable robots to acquire new skills much more quickly, by leveraging prior experience to learn how to learn. However, much of the current research on meta-reinforcement learning focuses on task distributions that are very narrow. For example, a commonly used meta-reinforcement learning benchmark uses different running velocities for a simulated robot as different tasks. When policies are meta-trained on such narrow task distributions, they cannot possibly generalize to more quickly acquire entirely new tasks. Therefore, if the aim of these methods is to enable faster acquisition of entirely new behaviors, we must evaluate them on task distributions that are sufficiently broad to enable generalization to new behaviors. In this paper, we propose an open-source simulated benchmark for meta-reinforcement learning and multi-task learning consisting of 50 distinct robotic manipulation tasks. Our aim is to make it possible to develop algorithms that generalize to accelerate the acquisition of entirely new, held-out tasks. We evaluate 6 state-of-the-art meta-reinforcement learning and multi-task learning algorithms on these tasks. Surprisingly, while each task and its variations (e.g., with different object positions) can be learned with reasonable success, these algorithms struggle to learn with multiple tasks at the same time, even with as few as ten distinct training tasks. Our analysis and open-source environments pave the way for future research in multi-task learning and meta-learning that can enable meaningful generalization, thereby unlocking the full potential of these methods.