亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We establish the minimax risk for parameter estimation in sparse high-dimensional Gaussian mixture models and show that a constrained maximum likelihood estimator (MLE) achieves the minimax optimality. However, the optimization-based constrained MLE is computationally intractable due to non-convexity of the problem. Therefore, we propose a Bayesian approach to estimate high-dimensional Gaussian mixtures whose cluster centers exhibit sparsity using a continuous spike-and-slab prior, and prove that the posterior contraction rate of the proposed Bayesian method is minimax optimal. The mis-clustering rate is obtained as a by-product using tools from matrix perturbation theory. Computationally, posterior inference of the proposed Bayesian method can be implemented via an efficient Gibbs sampler with data augmentation, circumventing the challenging frequentist nonconvex optimization-based algorithms. The proposed Bayesian sparse Gaussian mixture model does not require pre-specifying the number of clusters, which is allowed to grow with the sample size and can be adaptively estimated via posterior inference. The validity and usefulness of the proposed method is demonstrated through simulation studies and the analysis of a real-world single-cell RNA sequencing dataset.

相關內容

Leave-one-out cross-validation (LOO-CV) is a popular method for estimating out-of-sample predictive accuracy. However, computing LOO-CV criteria can be computationally expensive due to the need to fit the model multiple times. In the Bayesian context, importance sampling provides a possible solution but classical approaches can easily produce estimators whose variance is infinite, making them potentially unreliable. Here we propose and analyze a novel mixture estimator to compute Bayesian LOO-CV criteria. Our method retains the simplicity and computational convenience of classical approaches, while guaranteeing finite variance of the resulting estimators. Both theoretical and numerical results are provided to illustrate the improved robustness and efficiency. The computational benefits are particularly significant in high-dimensional problems, allowing to perform Bayesian LOO-CV for a broader range of models. The proposed methodology is easily implementable in standard probabilistic programming software and has a computational cost roughly equivalent to fitting the original model once.

We investigate a novel non-parametric regression-based clustering algorithm for longitudinal data analysis. Combining natural cubic splines with Gaussian mixture models (GMM), the algorithm can produce smooth cluster means that describe the underlying data well. However, there are some shortcomings in the algorithm: high computational complexity in the parameter estimation procedure and a numerically unstable variance estimator. Therefore, to further increase the usability of the method, we incorporated approaches to reduce its computational complexity, we developed a new, more stable variance estimator, and we developed a new smoothing parameter estimation procedure. We show that the developed algorithm, SMIXS, performs better than GMM on a synthetic dataset in terms of clustering and regression performance. We demonstrate the impact of the computational speed-ups, which we formally prove in the new framework. Finally, we perform a case study by using SMIXS to cluster vertical atmospheric measurements to determine different weather regimes.

This paper studies the impact of bootstrap procedure on the eigenvalue distributions of the sample covariance matrix under the high-dimensional factor structure. We provide asymptotic distributions for the top eigenvalues of bootstrapped sample covariance matrix under mild conditions. After bootstrap, the spiked eigenvalues which are driven by common factors will converge weakly to Gaussian limits via proper scaling and centralization. However, the largest non-spiked eigenvalue is mainly determined by order statistics of bootstrap resampling weights, and follows extreme value distribution. Based on the disparate behavior of the spiked and non-spiked eigenvalues, we propose innovative methods to test the number of common factors. According to the simulations and a real data example, the proposed methods are the only ones performing reliably and convincingly under the existence of both weak factors and cross-sectionally correlated errors. Our technical details contribute to random matrix theory on spiked covariance model with convexly decaying density and unbounded support, or with general elliptical distributions.

Mixtures of experts (MoE) models are a popular framework for modeling heterogeneity in data, for both regression and classification problems in statistics and machine learning, due to their flexibility and the abundance of available statistical estimation and model choice tools. Such flexibility comes from allowing the mixture weights (or gating functions) in the MoE model to depend on the explanatory variables, along with the experts (or component densities). This permits the modeling of data arising from more complex data generating processes when compared to the classical finite mixtures and finite mixtures of regression models, whose mixing parameters are independent of the covariates. The use of MoE models in a high-dimensional setting, when the number of explanatory variables can be much larger than the sample size, is challenging from a computational point of view, and in particular from a theoretical point of view, where the literature is still lacking results for dealing with the curse of dimensionality, for both the statistical estimation and feature selection problems. We consider the finite MoE model with soft-max gating functions and Gaussian experts for high-dimensional regression on heterogeneous data, and its $l_1$-regularized estimation via the Lasso. We focus on the Lasso estimation properties rather than its feature selection properties. We provide a lower bound on the regularization parameter of the Lasso function that ensures an $l_1$-oracle inequality satisfied by the Lasso estimator according to the Kullback--Leibler loss.

Recently, high dimensional vector auto-regressive models (VAR), have attracted a lot of interest, due to novel applications in the health, engineering and social sciences. The presence of temporal dependence poses additional challenges to the theory of penalized estimation techniques widely used in the analysis of their iid counterparts. However, recent work (e.g., [Basu and Michailidis, 2015, Kock and Callot, 2015]) has established optimal consistency of $\ell_1$-LASSO regularized estimates applied to models involving high dimensional stable, Gaussian processes. The only price paid for temporal dependence is an extra multiplicative factor that equals 1 for independent and identically distributed (iid) data. Further, [Wong et al., 2020] extended these results to heavy tailed VARs that exhibit "$\beta$-mixing" dependence, but the rates rates are sub-optimal, while the extra factor is intractable. This paper improves these results in two important directions: (i) We establish optimal consistency rates and corresponding finite sample bounds for the underlying model parameters that match those for iid data, modulo a price for temporal dependence, that is easy to interpret and equals 1 for iid data. (ii) We incorporate more general penalties in estimation (which are not decomposable unlike the $\ell_1$ norm) to induce general sparsity patterns. The key technical tool employed is a novel, easy-to-use concentration bound for heavy tailed linear processes, that do not rely on "mixing" notions and give tighter bounds.

In recent years, deep learning has been a topic of interest in almost all disciplines due to its impressive empirical success in analyzing complex data sets, such as imaging, genetics, climate, and medical data. While most of the developments are treated as black-box machines, there is an increasing interest in interpretable, reliable, and robust deep learning models applicable to a broad class of applications. Feature-selected deep learning is proven to be promising in this regard. However, the recent developments do not address the situations of ultra-high dimensional and highly correlated feature selection in addition to the high noise level. In this article, we propose a novel screening and cleaning strategy with the aid of deep learning for the cluster-level discovery of highly correlated predictors with a controlled error rate. A thorough empirical evaluation over a wide range of simulated scenarios demonstrates the effectiveness of the proposed method by achieving high power while having a minimal number of false discoveries. Furthermore, we implemented the algorithm in the riboflavin (vitamin $B_2$) production dataset in the context of understanding the possible genetic association with riboflavin production. The gain of the proposed methodology is illustrated by achieving lower prediction error compared to other state-of-the-art methods.

Capturing the conditional covariances or correlations among the elements of a multivariate response vector based on covariates is important to various fields including neuroscience, epidemiology and biomedicine. We propose a new method called Covariance Regression with Random Forests (CovRegRF) to estimate the covariance matrix of a multivariate response given a set of covariates, using a random forest framework. Random forest trees are built with a splitting rule specially designed to maximize the difference between the sample covariance matrix estimates of the child nodes. We also propose a significance test for the partial effect of a subset of covariates. We evaluate the performance of the proposed method and significance test through a simulation study which shows that the proposed method provides accurate covariance matrix estimates and that the Type-1 error is well controlled. We also demonstrate an application of the proposed method with a thyroid disease data set.

Bayesian variable selection methods are powerful techniques for fitting and inferring on sparse high-dimensional linear regression models. However, many are computationally intensive or require restrictive prior distributions on model parameters. Likelihood based penalization methods are more computationally friendly, but resource intensive refitting techniques are needed for inference. In this paper, we proposed an efficient and powerful Bayesian approach for sparse high-dimensional linear regression. Minimal prior assumptions on the parameters are required through the use of plug-in empirical Bayes estimates of hyperparameters. Efficient maximum a posteriori probability (MAP) estimation is completed through the use of a partitioned and extended expectation conditional maximization (ECM) algorithm. The result is a PaRtitiOned empirical Bayes Ecm (PROBE) algorithm applied to sparse high-dimensional linear regression. We propose methods to estimate credible and prediction intervals for predictions of future values. We compare the empirical properties of predictions and our predictive inference to comparable approaches with numerous simulation studies and an analysis of cancer cell lines drug response study. The proposed approach is implemented in the R package probe.

Interval-censored multi-state data arise in many studies of chronic diseases, where the health status of a subject can be characterized by a finite number of disease states and the transition between any two states is only known to occur over a broad time interval. We formulate the effects of potentially time-dependent covariates on multi-state processes through semiparametric proportional intensity models with random effects. We adopt nonparametric maximum likelihood estimation (NPMLE) under general interval censoring and develop a stable expectation-maximization (EM) algorithm. We show that the resulting parameter estimators are consistent and that the finite-dimensional components are asymptotically normal with a covariance matrix that attains the semiparametric efficiency bound and can be consistently estimated through profile likelihood. In addition, we demonstrate through extensive simulation studies that the proposed numerical and inferential procedures perform well in realistic settings. Finally, we provide an application to a major epidemiologic cohort study.

Stochastic kriging has been widely employed for simulation metamodeling to predict the response surface of complex simulation models. However, its use is limited to cases where the design space is low-dimensional because, in general, the sample complexity (i.e., the number of design points required for stochastic kriging to produce an accurate prediction) grows exponentially in the dimensionality of the design space. The large sample size results in both a prohibitive sample cost for running the simulation model and a severe computational challenge due to the need to invert large covariance matrices. Based on tensor Markov kernels and sparse grid experimental designs, we develop a novel methodology that dramatically alleviates the curse of dimensionality. We show that the sample complexity of the proposed methodology grows only slightly in the dimensionality, even under model misspecification. We also develop fast algorithms that compute stochastic kriging in its exact form without any approximation schemes. We demonstrate via extensive numerical experiments that our methodology can handle problems with a design space of more than 10,000 dimensions, improving both prediction accuracy and computational efficiency by orders of magnitude relative to typical alternative methods in practice.

北京阿比特科技有限公司