亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Stochastic kriging has been widely employed for simulation metamodeling to predict the response surface of complex simulation models. However, its use is limited to cases where the design space is low-dimensional because, in general, the sample complexity (i.e., the number of design points required for stochastic kriging to produce an accurate prediction) grows exponentially in the dimensionality of the design space. The large sample size results in both a prohibitive sample cost for running the simulation model and a severe computational challenge due to the need to invert large covariance matrices. Based on tensor Markov kernels and sparse grid experimental designs, we develop a novel methodology that dramatically alleviates the curse of dimensionality. We show that the sample complexity of the proposed methodology grows only slightly in the dimensionality, even under model misspecification. We also develop fast algorithms that compute stochastic kriging in its exact form without any approximation schemes. We demonstrate via extensive numerical experiments that our methodology can handle problems with a design space of more than 10,000 dimensions, improving both prediction accuracy and computational efficiency by orders of magnitude relative to typical alternative methods in practice.

相關內容

In evolutionary multiobjective optimization, effectiveness refers to how an evolutionary algorithm performs in terms of converging its solutions into the Pareto front and also diversifying them over the front. This is not an easy job, particularly for optimization problems with more than three objectives, dubbed many-objective optimization problems. In such problems, classic Pareto-based algorithms fail to provide sufficient selection pressure towards the Pareto front, whilst recently developed algorithms, such as decomposition-based ones, may struggle to maintain a set of well-distributed solutions on certain problems (e.g., those with irregular Pareto fronts). Another issue in some many-objective optimizers is rapidly increasing computational requirement with the number of objectives, such as hypervolume-based algorithms and shift-based density estimation (SDE) methods. In this paper, we aim to address this problem and develop an effective and efficient evolutionary algorithm (E3A) that can handle various many-objective problems. In E3A, inspired by SDE, a novel population maintenance method is proposed to select high-quality solutions in the environmental selection procedure. We conduct extensive experiments and show that E3A performs better than 11 state-of-the-art many-objective evolutionary algorithms in quickly finding a set of well-converged and well-diversified solutions.

Cross-diffusion systems arise as hydrodynamic limits of lattice multi-species interacting particle models. The objective of this work is to provide a numerical scheme for the simulation of the cross-diffusion system identified in [J. Quastel, Comm. Pure Appl. Math., 45 (1992), pp. 623--679]. To simulate this system, it is necessary to provide an approximation of the so-called self-diffusion coefficient matrix of the tagged particle process. Classical algorithms for the computation of this matrix are based on the estimation of the long-time limit of the average mean square displacement of the particle. In this work, as an alternative, we propose a novel approach for computing the self-diffusion coefficient using deterministic low-rank approximation techniques, as the minimum of a high-dimensional optimization problem. The computed self-diffusion coefficient is then used for the simulation of the cross-diffusion system using an implicit finite volume scheme.

We build a general framework which establishes a one-to-one correspondence between species abundance distribution (SAD) and species accumulation curve (SAC). The appearance rates of the species and the appearance times of individuals of each species are modeled as Poisson processes. The number of species can be finite or infinite. Hill numbers are extended to the framework. We introduce a linear derivative ratio family of models, $\mathrm{LDR}_1$, of which the ratio of the first and the second derivatives of the expected SAC is a linear function. A D1/D2 plot is proposed to detect this linear pattern in the data. By extrapolation of the curve in the D1/D2 plot, a species richness estimator that extends Chao1 estimator is introduced. The SAD of $\mathrm{LDR}_1$ is the Engen's extended negative binomial distribution, and the SAC encompasses several popular parametric forms including the power law. Family $\mathrm{LDR}_1$ is extended in two ways: $\mathrm{LDR}_2$ which allows species with zero detection probability, and $\mathrm{RDR}_1$ where the derivative ratio is a rational function. Real data are analyzed to demonstrate the proposed methods. We also consider the scenario where we record only a few leading appearance times of each species. We show how maximum likelihood inference can be performed when only the empirical SAC is observed, and elucidate its advantages over the traditional curve-fitting method.

Censored quantile regression (CQR) has become a valuable tool to study the heterogeneous association between a possibly censored outcome and a set of covariates, yet computation and statistical inference for CQR have remained a challenge for large-scale data with many covariates. In this paper, we focus on a smoothed martingale-based sequential estimating equations approach, to which scalable gradient-based algorithms can be applied. Theoretically, we provide a unified analysis of the smoothed sequential estimator and its penalized counterpart in increasing dimensions. When the covariate dimension grows with the sample size at a sublinear rate, we establish the uniform convergence rate (over a range of quantile indexes) and provide a rigorous justification for the validity of a multiplier bootstrap procedure for inference. In high-dimensional sparse settings, our results considerably improve the existing work on CQR by relaxing an exponential term of sparsity. We also demonstrate the advantage of the smoothed CQR over existing methods with both simulated experiments and data applications.

We propose a stochastic first-order trust-region method with inexact function and gradient evaluations for solving finite-sum minimization problems. Using a suitable reformulation of the given problem, our method combines the inexact restoration approach for constrained optimization with the trust-region procedure and random models. Differently from other recent stochastic trust-region schemes, our proposed algorithm improves feasibility and optimality in a modular way. We provide the expected number of iterations for reaching a near-stationary point by imposing some probability accuracy requirements on random functions and gradients which are, in general, less stringent than the corresponding ones in literature. We validate the proposed algorithm on some nonconvex optimization problems arising in binary classification and regression, showing that it performs well in terms of cost and accuracy, and allows to reduce the burdensome tuning of the hyper-parameters involved.

Simultaneously identifying contributory variables and controlling the false discovery rate (FDR) in high-dimensional data is an important statistical problem. In this paper, we propose a novel model-free variable selection procedure in sufficient dimension reduction via data splitting technique. The variable selection problem is first connected with a least square procedure with several response transformations. We construct a series of statistics with global symmetry property and then utilize the symmetry to derive a data-driven threshold to achieve error rate control. This method can achieve finite-sample and asymptotic FDR control under some mild conditions. Numerical experiments indicate that our procedure has satisfactory FDR control and higher power compared with existing methods.

We propose a new stochastic primal-dual optimization algorithm for planning in a large discounted Markov decision process with a generative model and linear function approximation. Assuming that the feature map approximately satisfies standard realizability and Bellman-closedness conditions and also that the feature vectors of all state-action pairs are representable as convex combinations of a small core set of state-action pairs, we show that our method outputs a near-optimal policy after a polynomial number of queries to the generative model. Our method is computationally efficient and comes with the major advantage that it outputs a single softmax policy that is compactly represented by a low-dimensional parameter vector, and does not need to execute computationally expensive local planning subroutines in runtime.

Knowledge distillation is one of the primary methods of transferring knowledge from large to small models. However, it requires massive task-specific data, which may not be plausible in many real-world applications. Data augmentation methods such as representation interpolation, token replacement, or augmentation with models are applied to tackle this problem. However, these data augmentation methods either potentially cause shifts in decision boundaries (representation interpolation), are not expressive enough (token replacement), or introduce too much computational overhead (augmentation with models). To this end, we propose AugPro (Augmentation with Projection), an effective and efficient data augmentation method for distillation. Our method builds on top of representation interpolation augmentation methods to maintain the diversity of expressions and converts the augmented data to tokens to avoid shifting decision boundaries. It uses simple operations that come with little computational overhead. The results on multiple GLUE tasks show that our methods can improve distillation performance by a large margin at a low time cost.

We develop a novel deep learning method for uncertainty quantification in stochastic partial differential equations based on Bayesian neural network (BNN) and Hamiltonian Monte Carlo (HMC). A BNN efficiently learns the posterior distribution of the parameters in deep neural networks by performing Bayesian inference on the network parameters. The posterior distribution is efficiently sampled using HMC to quantify uncertainties in the system. Several numerical examples are shown for both forward and inverse problems in high dimension to demonstrate the effectiveness of the proposed method for uncertainty quantification. These also show promising results that the computational cost is almost independent of the dimension of the problem demonstrating the potential of the method for tackling the so-called curse of dimensionality.

Since hardware resources are limited, the objective of training deep learning models is typically to maximize accuracy subject to the time and memory constraints of training and inference. We study the impact of model size in this setting, focusing on Transformer models for NLP tasks that are limited by compute: self-supervised pretraining and high-resource machine translation. We first show that even though smaller Transformer models execute faster per iteration, wider and deeper models converge in significantly fewer steps. Moreover, this acceleration in convergence typically outpaces the additional computational overhead of using larger models. Therefore, the most compute-efficient training strategy is to counterintuitively train extremely large models but stop after a small number of iterations. This leads to an apparent trade-off between the training efficiency of large Transformer models and the inference efficiency of small Transformer models. However, we show that large models are more robust to compression techniques such as quantization and pruning than small models. Consequently, one can get the best of both worlds: heavily compressed, large models achieve higher accuracy than lightly compressed, small models.

北京阿比特科技有限公司