亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Visually impaired people usually find it hard to travel independently in many public places such as airports and shopping malls due to the problems of obstacle avoidance and guidance to the desired location. Therefore, in the highly dynamic indoor environment, how to improve indoor navigation robot localization and navigation accuracy so that they guide the visually impaired well becomes a problem. One way is to use visual SLAM. However, typical visual SLAM either assumes a static environment, which may lead to less accurate results in dynamic environments or assumes that the targets are all dynamic and removes all the feature points above, sacrificing computational speed to a large extent with the available computational power. This paper seeks to explore marginal localization and navigation systems for indoor navigation robotics. The proposed system is designed to improve localization and navigation accuracy in highly dynamic environments by identifying and tracking potentially moving objects and using vector field histograms for local path planning and obstacle avoidance. The system has been tested on a public indoor RGB-D dataset, and the results show that the new system improves accuracy and robustness while reducing computation time in highly dynamic indoor scenes.

相關內容

Safety is essential for deploying Deep Reinforcement Learning (DRL) algorithms in real-world scenarios. Recently, verification approaches have been proposed to allow quantifying the number of violations of a DRL policy over input-output relationships, called properties. However, such properties are hard-coded and require task-level knowledge, making their application intractable in challenging safety-critical tasks. To this end, we introduce the Collection and Refinement of Online Properties (CROP) framework to design properties at training time. CROP employs a cost signal to identify unsafe interactions and use them to shape safety properties. Hence, we propose a refinement strategy to combine properties that model similar unsafe interactions. Our evaluation compares the benefits of computing the number of violations using standard hard-coded properties and the ones generated with CROP. We evaluate our approach in several robotic mapless navigation tasks and demonstrate that the violation metric computed with CROP allows higher returns and lower violations over previous Safe DRL approaches.

Autonomous navigation in crowded environments is an open problem with many applications, essential for the coexistence of robots and humans in the smart cities of the future. In recent years, deep reinforcement learning approaches have proven to outperform model-based algorithms. Nevertheless, even though the results provided are promising, the works are not able to take advantage of the capabilities that their models offer. They usually get trapped in local optima in the training process, that prevent them from learning the optimal policy. They are not able to visit and interact with every possible state appropriately, such as with the states near the goal or near the dynamic obstacles. In this work, we propose using intrinsic rewards to balance between exploration and exploitation and explore depending on the uncertainty of the states instead of on the time the agent has been trained, encouraging the agent to get more curious about unknown states. We explain the benefits of the approach and compare it with other exploration algorithms that may be used for crowd navigation. Many simulation experiments are performed modifying several algorithms of the state-of-the-art, showing that the use of intrinsic rewards makes the robot learn faster and reach higher rewards and success rates (fewer collisions) in shorter navigation times, outperforming the state-of-the-art.

The prediction of surrounding agents' motion is a key for safe autonomous driving. In this paper, we explore navigation maps as an alternative to the predominant High Definition (HD) maps for learning-based motion prediction. Navigation maps provide topological and geometrical information on road-level, HD maps additionally have centimeter-accurate lane-level information. As a result, HD maps are costly and time-consuming to obtain, while navigation maps with near-global coverage are freely available. We describe an approach to integrate navigation maps into learning-based motion prediction models. To exploit locally available HD maps during training, we additionally propose a model-agnostic method for knowledge distillation. In experiments on the publicly available Argoverse dataset with navigation maps obtained from OpenStreetMap, our approach shows a significant improvement over not using a map at all. Combined with our method for knowledge distillation, we achieve results that are close to the original HD map-reliant models. Our publicly available navigation map API for Argoverse enables researchers to develop and evaluate their own approaches using navigation maps.

The proliferation of smartphone devices has led to the emergence of powerful user services from enabling interactions with friends and business associates to mapping, finding nearby businesses and alerting users in real-time. Moreover, users do not realize that continuously sharing their trajectory data with online systems may end up revealing a great amount of information in terms of their behavior, mobility patterns and social relationships. Thus, addressing these privacy risks is a fundamental challenge. In this work, we present $TP^3$, a Privacy Protection system for Trajectory analytics. Our contributions are the following: (1) we model a new type of attack, namely 'social link exploitation attack', (2) we utilize the coresets theory, a fast and accurate technique which approximates well the original data using a small data set, and running queries on the coreset produces similar results to the original data, and (3) we employ the Serverless computing paradigm to accommodate a set of privacy operations for achieving high system performance with minimized provisioning costs, while preserving the users' privacy. We have developed these techniques in our $TP^3$ system that works with state-of-the-art trajectory analytics apps and applies different types of privacy operations. Our detailed experimental evaluation illustrates that our approach is both efficient and practical.

Autonomous vehicles and robots require increasingly more robustness and reliability to meet the demands of modern tasks. These requirements specially apply to cameras onboard such vehicles because they are the predominant sensors to acquire information about the environment and support actions. Cameras must maintain proper functionality and take automatic countermeasures if necessary. However, few works examine the practical use of a general condition monitoring approach for cameras and designs countermeasures in the context of an envisaged high-level application. We propose a generic and interpretable self-health-maintenance framework for cameras based on data- and physically-grounded models. To this end, we determine two reliable, real-time capable estimators for typical image effects of a camera in poor condition (blur, noise phenomena and most common combinations) by comparing traditional and retrained machine learning-based approaches in extensive experiments. Furthermore, we demonstrate on a real-world ground vehicle how one can adjust the camera parameters to achieve optimal whole-system capability based on experimental (non-linear and non-monotonic) input-output performance curves, using object detection, motion blur and sensor noise as examples. Our framework not only provides a practical ready-to-use solution to evaluate and maintain the health of cameras, but can also serve as a basis for extensions to tackle more sophisticated problems that combine additional data sources (e.g., sensor or environment parameters) empirically in order to attain fully reliable and robust machines.

Mobile parcel lockers have been recently proposed by logistics operators as a technology that could help reduce traffic congestion and operational costs in urban freight distribution. Given their ability to relocate throughout their area of deployment, they hold the potential to improve customer accessibility and convenience. In this study, we formulate the Mobile Parcel Locker Problem (MPLP) , a special case of the Location-Routing Problem (LRP) which determines the optimal stopover location for MPLs throughout the day and plans corresponding delivery routes. A Hybrid Q Learning Network based Method (HQM) is developed to resolve the computational complexity of the resulting large problem instances while escaping local optima. In addition, the HQM is integrated with global and local search mechanisms to resolve the dilemma of exploration and exploitation faced by classic reinforcement learning methods. We examine the performance of HQM under different problem sizes (up to 200 nodes) and benchmarked it against the exact approach and Genetic Algorithm (GA). Our results indicate that HQM achieves better optimisation performance with shorter computation time than the exact approach solved by the Gurobi solver in large problem instances. Additionally, the average reward obtained by HQM is 1.96 times greater than GA, which demonstrates that HQM has a better optimisation ability. Further, we identify critical factors that contribute to fleet size requirements, travel distances, and service delays. Our findings outline that the efficiency of MPLs is mainly contingent on the length of time windows and the deployment of MPL stopovers. Finally, we highlight managerial implications based on parametric analysis to provide guidance for logistics operators in the context of efficient last-mile distribution operations.

This article proposes Persistence Administered Collective Navigation (PACNav) as an approach for achieving decentralized collective navigation of Unmanned Aerial Vehicle (UAV) swarms. The technique is based on the flocking and collective navigation behavior observed in natural swarms, such as cattle herds, bird flocks, and even large groups of humans. As global and concurrent information of all swarm members is not available in natural swarms, these systems use local observations to achieve the desired behavior. Similarly, PACNav relies only on local observations of relative positions of UAVs, making it suitable for large swarms deprived of communication capabilities and external localization systems. We introduce the novel concepts of path persistence and path similarity that allow each swarm member to analyze the motion of other members in order to determine its own future motion. PACNav is based on two main principles: (1) UAVs with little variation in motion direction have high path persistence, and are considered by other UAVs to be reliable leaders; (2) groups of UAVs that move in a similar direction have high path similarity, and such groups are assumed to contain a reliable leader. The proposed approach also embeds a reactive collision avoidance mechanism to avoid collisions with swarm members and environmental obstacles. This collision avoidance ensures safety while reducing deviations from the assigned path. Along with several simulated experiments, we present a real-world experiment in a natural forest, showcasing the validity and effectiveness of the proposed collective navigation approach in challenging environments. The source code is released as open-source, making it possible to replicate the obtained results and facilitate the continuation of research by the community.

Effective multi-robot teams require the ability to move to goals in complex environments in order to address real-world applications such as search and rescue. Multi-robot teams should be able to operate in a completely decentralized manner, with individual robot team members being capable of acting without explicit communication between neighbors. In this paper, we propose a novel game theoretic model that enables decentralized and communication-free navigation to a goal position. Robots each play their own distributed game by estimating the behavior of their local teammates in order to identify behaviors that move them in the direction of the goal, while also avoiding obstacles and maintaining team cohesion without collisions. We prove theoretically that generated actions approach a Nash equilibrium, which also corresponds to an optimal strategy identified for each robot. We show through extensive simulations that our approach enables decentralized and communication-free navigation by a multi-robot system to a goal position, and is able to avoid obstacles and collisions, maintain connectivity, and respond robustly to sensor noise.

Breakthroughs in machine learning in the last decade have led to `digital intelligence', i.e. machine learning models capable of learning from vast amounts of labeled data to perform several digital tasks such as speech recognition, face recognition, machine translation and so on. The goal of this thesis is to make progress towards designing algorithms capable of `physical intelligence', i.e. building intelligent autonomous navigation agents capable of learning to perform complex navigation tasks in the physical world involving visual perception, natural language understanding, reasoning, planning, and sequential decision making. Despite several advances in classical navigation methods in the last few decades, current navigation agents struggle at long-term semantic navigation tasks. In the first part of the thesis, we discuss our work on short-term navigation using end-to-end reinforcement learning to tackle challenges such as obstacle avoidance, semantic perception, language grounding, and reasoning. In the second part, we present a new class of navigation methods based on modular learning and structured explicit map representations, which leverage the strengths of both classical and end-to-end learning methods, to tackle long-term navigation tasks. We show that these methods are able to effectively tackle challenges such as localization, mapping, long-term planning, exploration and learning semantic priors. These modular learning methods are capable of long-term spatial and semantic understanding and achieve state-of-the-art results on various navigation tasks.

The goal of few-shot learning is to learn a classifier that generalizes well even when trained with a limited number of training instances per class. The recently introduced meta-learning approaches tackle this problem by learning a generic classifier across a large number of multiclass classification tasks and generalizing the model to a new task. Yet, even with such meta-learning, the low-data problem in the novel classification task still remains. In this paper, we propose Transductive Propagation Network (TPN), a novel meta-learning framework for transductive inference that classifies the entire test set at once to alleviate the low-data problem. Specifically, we propose to learn to propagate labels from labeled instances to unlabeled test instances, by learning a graph construction module that exploits the manifold structure in the data. TPN jointly learns both the parameters of feature embedding and the graph construction in an end-to-end manner. We validate TPN on multiple benchmark datasets, on which it largely outperforms existing few-shot learning approaches and achieves the state-of-the-art results.

北京阿比特科技有限公司