In this paper, we propose two efficient fully-discrete schemes for Q-tensor flow of liquid crystals by using the first- and second-order stabilized exponential scalar auxiliary variable (sESAV) approach in time and the finite difference method for spatial discretization. The modified discrete energy dissipation laws are unconditionally satisfied for both two constructed schemes. A particular feature is that, for two-dimensional (2D) and a kind of three-dimensional (3D) Q-tensor flows, the unconditional maximum-bound-principle (MBP) preservation of the constructed first-order scheme is successfully established, and the proposed second-order scheme preserves the discrete MBP property with a mild restriction on the time-step sizes. Furthermore, we rigorously derive the corresponding error estimates for the fully-discrete second-order schemes by using the built-in stability results. Finally, various numerical examples validating the theoretical results, such as the orientation of liquid crystal in 2D and 3D, are presented for the constructed schemes.
In this study, we investigate the Shallow Water Equations incorporating source terms accounting for Manning friction and a non-flat bottom topology. Our primary focus is on developing and validating numerical schemes that serve a dual purpose: firstly, preserving all steady states within the model, and secondly, maintaining the late-time asymptotic behavior of solutions, which is governed by a diffusion equation and coincides with a long time and stiff friction limit. Our proposed approach draws inspiration from a penalization technique adopted in {\it{[Boscarino et. al, SIAM Journal on Scientific Computing, 2014]}}. By employing an additive implicit-explicit Runge-Kutta method, the scheme can ensure a correct asymptotic behavior for the limiting diffusion equation, without suffering from a parabolic-type time step restriction which often afflicts multiscale problems in the diffusive limit. Numerical experiments are performed to illustrate high order accuracy, asymptotic preserving, and asymptotically accurate properties of the designed schemes.
In this paper, we obtain sufficient and necessary conditions for quasi-cyclic codes with index even to be symplectic self-orthogonal. Then, we propose a method for constructing symplectic self-orthogonal quasi-cyclic codes, which allows arbitrary polynomials that coprime $x^{n}-1$ to construct symplectic self-orthogonal codes. Moreover, by decomposing the space of quasi-cyclic codes, we provide lower and upper bounds on the minimum symplectic distances of a class of 1-generator quasi-cyclic codes and their symplectic dual codes. Finally, we construct many binary symplectic self-orthogonal codes with excellent parameters, corresponding to 117 record-breaking quantum codes, improving Grassl's table (Bounds on the Minimum Distance of Quantum Codes. //www.codetables.de).
We investigate the miscible displacement of a viscous liquid by a less viscous one in a porous medium, which frequently leads to the formation of a mixing zone characterized by thin fingers. The mixing zone grows in time due to the difference in speed between the leading and trailing edges. The transverse flow equilibrium (TFE) model provides estimates of these speeds. We propose an enhancement for the TFE estimates. It is based on the assumption that an intermediate concentration exists near the tip of the finger, which allows to reduce the integration interval in the speed estimate. Numerical simulations of the computational fluid dynamics model were conducted to validate the new estimates. The refined estimates offer greater accuracy than those provided by the original TFE model.
In this paper, we present a novel numerical scheme for simulating deformable and extensible capsules suspended in a Stokesian fluid. The main feature of our scheme is a partition-of-unity (POU) based representation of the surface that enables asymptotically faster computations compared to spherical-harmonics based representations. We use a boundary integral equation formulation to represent and discretize hydrodynamic interactions. The boundary integrals are weakly singular. We use the quadrature scheme based on the regularized Stokes kernels. We also use partition-of unity based finite differences that are required for the computational of interfacial forces. Given an N-point surface discretization, our numerical scheme has fourth-order accuracy and O(N) asymptotic complexity, which is an improvement over the O(N^2 log(N)) complexity of a spherical harmonics based spectral scheme that uses product-rule quadratures. We use GPU acceleration and demonstrate the ability of our code to simulate the complex shapes with high resolution. We study capsules that resist shear and tension and their dynamics in shear and Poiseuille flows. We demonstrate the convergence of the scheme and compare with the state of the art.
In two and three dimensions, we design and analyze a posteriori error estimators for the mixed Stokes eigenvalue problem. The unknowns on this mixed formulation are the pseudotress, velocity and pressure. With a lowest order mixed finite element scheme, together with a postprocressing technique, we prove that the proposed estimator is reliable and efficient. We illustrate the results with several numerical tests in two and three dimensions in order to assess the performance of the estimator.
We present an energy/entropy stable and high order accurate finite difference method for solving the linear/nonlinear shallow water equations (SWE) in vector invariant form using the newly developed dual-pairing (DP) and dispersion-relation preserving (DRP) summation by parts (SBP) finite difference operators. We derive new well-posed boundary conditions for the SWE in one space dimension, formulated in terms of fluxes and applicable to linear and nonlinear problems. For nonlinear problems, entropy stability ensures the boundedness of numerical solutions, however, it does not guarantee convergence. Adequate amount of numerical dissipation is necessary to control high frequency errors which could ruin numerical simulations. Using the dual-pairing SBP framework, we derive high order accurate and nonlinear hyper-viscosity operator which dissipates entropy and enstrophy. The hyper-viscosity operator effectively tames oscillations from shocks and discontinuities, and eliminates poisonous high frequency grid-scale errors. The numerical method is most suitable for the simulations of sub-critical flows typical observed in atmospheric and geostrophic flow problems. We prove a priori error estimates for the semi-discrete approximations of both linear and nonlinear SWE. We verify convergence, accuracy and well-balanced property via the method of manufactured solutions (MMS) and canonical test problems such as the dam break, lake at rest, and a two-dimensional rotating and merging vortex problem.
A new mechanical model on noncircular shallow tunnelling considering initial stress field is proposed in this paper by constraining far-field ground surface to eliminate displacement singularity at infinity, and the originally unbalanced tunnel excavation problem in existing solutions is turned to an equilibrium one of mixed boundaries. By applying analytic continuation, the mixed boundaries are transformed to a homogenerous Riemann-Hilbert problem, which is subsequently solved via an efficient and accurate iterative method with boundary conditions of static equilibrium, displacement single-valuedness, and traction along tunnel periphery. The Lanczos filtering technique is used in the final stress and displacement solution to reduce the Gibbs phenomena caused by the constrained far-field ground surface for more accurte results. Several numerical cases are conducted to intensively verify the proposed solution by examining boundary conditions and comparing with existing solutions, and all the results are in good agreements. Then more numerical cases are conducted to investigate the stress and deformation distribution along ground surface and tunnel periphery, and several engineering advices are given. Further discussions on the defects of the proposed solution are also conducted for objectivity.
In this paper we introduce a multilevel Picard approximation algorithm for general semilinear parabolic PDEs with gradient-dependent nonlinearities whose coefficient functions do not need to be constant. We also provide a full convergence and complexity analysis of our algorithm. To obtain our main results, we consider a particular stochastic fixed-point equation (SFPE) motivated by the Feynman-Kac representation and the Bismut-Elworthy-Li formula. We show that the PDE under consideration has a unique viscosity solution which coincides with the first component of the unique solution of the stochastic fixed-point equation. Moreover, if the PDE admits a strong solution, then the gradient of the unique solution of the PDE coincides with the second component of the unique solution of the stochastic fixed-point equation.
In this paper, we consider point sets of finite Desarguesian planes whose multisets of intersection numbers with lines is the same for all but one exceptional parallel class of lines. We call such sets regular of affine type. When the lines of the exceptional parallel class have the same intersection numbers, then we call these sets regular of pointed type. Classical examples are e.g. unitals; a detailed study and constructions of such sets with few intersection numbers is due to Hirschfeld and Sz\H{o}nyi from 1991. We here provide some general construction methods for regular sets and describe a few infinite families. The members of one of these families have the size of a unital and meet affine lines of $\mathrm{PG}(2, q^2)$ in one of $4$ possible intersection numbers, each of them congruent to $1$ modulo $\sqrt{q}$. As a byproduct, we determine the intersection sizes of the Hermitian curve defined over $\mathrm{GF}(q^2)$ with suitable rational curves of degree $\sqrt{q}$ and we obtain $\sqrt{q}$-divisible codes with $5$ non-zero weights. We also determine the weight enumerator of the codes arising from the general constructions modulus some $q$-powers.
The proximal Galerkin finite element method is a high-order, low iteration complexity, nonlinear numerical method that preserves the geometric and algebraic structure of pointwise bound constraints in infinite-dimensional function spaces. This paper introduces the proximal Galerkin method and applies it to solve free boundary problems, enforce discrete maximum principles, and develop a scalable, mesh-independent algorithm for optimal design problems with pointwise bound constraints. This paper also provides a derivation of the latent variable proximal point (LVPP) algorithm, an unconditionally stable alternative to the interior point method. LVPP is an infinite-dimensional optimization algorithm that may be viewed as having an adaptive barrier function that is updated with a new informative prior at each (outer loop) optimization iteration. One of its main benefits is witnessed when analyzing the classical obstacle problem. Therein, we find that the original variational inequality can be replaced by a sequence of partial differential equations (PDEs) that are readily discretized and solved with, e.g., high-order finite elements. Throughout this work, we arrive at several unexpected contributions that may be of independent interest. These include (1) a semilinear PDE we refer to as the entropic Poisson equation; (2) an algebraic/geometric connection between high-order positivity-preserving discretizations and certain infinite-dimensional Lie groups; and (3) a gradient-based, bound-preserving algorithm for two-field density-based topology optimization. The complete latent variable proximal Galerkin methodology combines ideas from nonlinear programming, functional analysis, tropical algebra, and differential geometry and can potentially lead to new synergies among these areas as well as within variational and numerical analysis.