We present an energy/entropy stable and high order accurate finite difference method for solving the linear/nonlinear shallow water equations (SWE) in vector invariant form using the newly developed dual-pairing (DP) and dispersion-relation preserving (DRP) summation by parts (SBP) finite difference operators. We derive new well-posed boundary conditions for the SWE in one space dimension, formulated in terms of fluxes and applicable to linear and nonlinear problems. For nonlinear problems, entropy stability ensures the boundedness of numerical solutions, however, it does not guarantee convergence. Adequate amount of numerical dissipation is necessary to control high frequency errors which could ruin numerical simulations. Using the dual-pairing SBP framework, we derive high order accurate and nonlinear hyper-viscosity operator which dissipates entropy and enstrophy. The hyper-viscosity operator effectively tames oscillations from shocks and discontinuities, and eliminates poisonous high frequency grid-scale errors. The numerical method is most suitable for the simulations of sub-critical flows typical observed in atmospheric and geostrophic flow problems. We prove a priori error estimates for the semi-discrete approximations of both linear and nonlinear SWE. We verify convergence, accuracy and well-balanced property via the method of manufactured solutions (MMS) and canonical test problems such as the dam break, lake at rest, and a two-dimensional rotating and merging vortex problem.
Exact travelling wave solutions to the two-dimensional stochastic Allen-Cahn equation with multiplicative noise are obtained through the hyperbolic tangent (tanh) method. This technique limits the solutions to travelling wave profiles by representing them with a finite tanh power series. This study focuses on how multiplicative noise affects the dynamics of these travelling waves, in particular, occurring of wave propagation failure due to high levels of noise.
We present a rigorous and precise analysis of the maximum degree and the average degree in a dynamic duplication-divergence graph model introduced by Sol\'e, Pastor-Satorras et al. in which the graph grows according to a duplication-divergence mechanism, i.e. by iteratively creating a copy of some node and then randomly alternating the neighborhood of a new node with probability $p$. This model captures the growth of some real-world processes e.g. biological or social networks. In this paper, we prove that for some $0 < p < 1$ the maximum degree and the average degree of a duplication-divergence graph on $t$ vertices are asymptotically concentrated with high probability around $t^p$ and $\max\{t^{2 p - 1}, 1\}$, respectively, i.e. they are within at most a polylogarithmic factor from these values with probability at least $1 - t^{-A}$ for any constant $A > 0$.
While many phenomena in physics and engineering are formally high-dimensional, their long-time dynamics often live on a lower-dimensional manifold. The present work introduces an autoencoder framework that combines implicit regularization with internal linear layers and $L_2$ regularization (weight decay) to automatically estimate the underlying dimensionality of a data set, produce an orthogonal manifold coordinate system, and provide the mapping functions between the ambient space and manifold space, allowing for out-of-sample projections. We validate our framework's ability to estimate the manifold dimension for a series of datasets from dynamical systems of varying complexities and compare to other state-of-the-art estimators. We analyze the training dynamics of the network to glean insight into the mechanism of low-rank learning and find that collectively each of the implicit regularizing layers compound the low-rank representation and even self-correct during training. Analysis of gradient descent dynamics for this architecture in the linear case reveals the role of the internal linear layers in leading to faster decay of a "collective weight variable" incorporating all layers, and the role of weight decay in breaking degeneracies and thus driving convergence along directions in which no decay would occur in its absence. We show that this framework can be naturally extended for applications of state-space modeling and forecasting by generating a data-driven dynamic model of a spatiotemporally chaotic partial differential equation using only the manifold coordinates. Finally, we demonstrate that our framework is robust to hyperparameter choices.
We consider the low-rank alternating directions implicit (ADI) iteration for approximately solving large-scale algebraic Sylvester equations. Inside every iteration step of this iterative process a pair of linear systems of equations has to be solved. We investigate the situation when those inner linear systems are solved inexactly by an iterative methods such as, for example, preconditioned Krylov subspace methods. The main contribution of this work are thresholds for the required accuracies regarding the inner linear systems which dictate when the employed inner Krylov subspace methods can be safely terminated. The goal is to save computational effort by solving the inner linear system as inaccurate as possible without endangering the functionality of the low-rank Sylvester-ADI method. Ideally, the inexact ADI method mimics the convergence behaviour of the more expensive exact ADI method, where the linear systems are solved directly. Alongside the theoretical results, also strategies for an actual practical implementation of the stopping criteria are developed. Numerical experiments confirm the effectiveness of the proposed strategies.
We present a finite element approach for diffusion problems with thermal fluctuations based on a fluctuating hydrodynamics model. The governing transport equations are stochastic partial differential equations with a fluctuating forcing term. We propose a discrete formulation of the stochastic forcing term that has the correct covariance matrix up to a standard discretization error. Furthermore, to obtain a numerical solution with spatial correlations that converge to those of the continuum equation, we derive a linear mapping to transform the finite element solution into an equivalent discrete solution that is free from the artificial correlations introduced by the spatial discretization. The method is validated by applying it to two diffusion problems: a second-order diffusion equation and a fourth-order diffusion equation. The theoretical (continuum) solution to the first case presents spatially decorrelated fluctuations, while the second case presents fluctuations correlated over a finite length. In both cases, the numerical solution presents a structure factor that approximates well the continuum one.
This paper makes the first bridge between the classical differential/boomerang uniformity and the newly introduced $c$-differential uniformity. We show that the boomerang uniformity of an odd APN function is given by the maximum of the entries (except for the first row/column) of the function's $(-1)$-Difference Distribution Table. In fact, the boomerang uniformity of an odd permutation APN function equals its $(-1)$-differential uniformity. We next apply this result to easily compute the boomerang uniformity of several odd APN functions. In the second part we give two classes of differentially low-uniform functions obtained by modifying the inverse function. The first class of permutations (CCZ-inequivalent to the inverse) over a finite field $\mathbb{F}_{p^n}$ ($p$, an odd prime) is obtained from the composition of the inverse function with an order-$3$ cycle permutation, with differential uniformity $3$ if $p=3$ and $n$ is odd; $5$ if $p=13$ and $n$ is even; and $4$ otherwise. The second class is a family of binomials and we show that their differential uniformity equals~$4$. We next complete the open case of $p=3$ in the investigation started by G\" olo\u glu and McGuire (2014), for $p\geq 5$, and continued by K\"olsch (2021), for $p=2$, $n\geq 5$, on the characterization of $L_1(X^{p^n-2})+L_2(X)$ (with linearized $L_1,L_2$) being a permutation polynomial. Finally, we extend to odd characteristic a result of Charpin and Kyureghyan (2010) providing an upper bound for the differential uniformity of the function and its switched version via a trace function.
We present an efficient matrix-free geometric multigrid method for the elastic Helmholtz equation, and a suitable discretization. Many discretization methods had been considered in the literature for the Helmholtz equations, as well as many solvers and preconditioners, some of which are adapted for the elastic version of the equation. However, there is very little work considering the reciprocity of discretization and a solver. In this work, we aim to bridge this gap. By choosing an appropriate stencil for re-discretization of the equation on the coarse grid, we develop a multigrid method that can be easily implemented as matrix-free, relying on stencils rather than sparse matrices. This is crucial for efficient implementation on modern hardware. Using two-grid local Fourier analysis, we validate the compatibility of our discretization with our solver, and tune a choice of weights for the stencil for which the convergence rate of the multigrid cycle is optimal. It results in a scalable multigrid preconditioner that can tackle large real-world 3D scenarios.
We propose a method for computing the Lyapunov exponents of renewal equations (delay equations of Volterra type) and of coupled systems of renewal and delay differential equations. The method consists in the reformulation of the delay equation as an abstract differential equation, the reduction of the latter to a system of ordinary differential equations via pseudospectral collocation, and the application of the standard discrete QR method. The effectiveness of the method is shown experimentally and a MATLAB implementation is provided.
We develop a novel discontinuous Galerkin method for solving the rotating thermal shallow water equations (TRSW) on a curvilinear mesh. Our method is provably entropy stable, conserves mass, buoyancy and vorticity, while also semi-discretely conserving energy. This is achieved by using novel numerical fluxes and splitting the pressure and convection operators. We implement our method on a cubed sphere mesh and numerically verify our theoretical results. Our experiments demonstrate the robustness of the method for a regime of well developed turbulence, where it can be run stably without any dissipation. The entropy stable fluxes are sufficient to control the grid scale noise generated by geostrophic turbulence, eliminating the need for artificial stabilization.
This manuscript deals with the analysis of numerical methods for the full discretization (in time and space) of the linear heat equation with Neumann boundary conditions, and it provides the reader with error estimates that are uniform in time. First, we consider the homogeneous equation with homogeneous Neumann boundary conditions over a finite interval. Using finite differences in space and the Euler method in time, we prove that our method is of order 1 in space, uniformly in time, under a classical CFL condition, and despite its lack of consistency at the boundaries. Second, we consider the nonhomogeneous equation with nonhomogeneous Neumann boundary conditions over a finite interval. Using a tailored similar scheme, we prove that our method is also of order 1 in space, uniformly in time, under a classical CFL condition. We indicate how this numerical method allows for a new way to compute steady states of such equations when they exist. We conclude by several numerical experiments to illustrate the sharpness and relevance of our theoretical results, as well as to examine situations that do not meet the hypotheses of our theoretical results, and to illustrate how our results extend to higher dimensions.