亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper makes the first bridge between the classical differential/boomerang uniformity and the newly introduced $c$-differential uniformity. We show that the boomerang uniformity of an odd APN function is given by the maximum of the entries (except for the first row/column) of the function's $(-1)$-Difference Distribution Table. In fact, the boomerang uniformity of an odd permutation APN function equals its $(-1)$-differential uniformity. We next apply this result to easily compute the boomerang uniformity of several odd APN functions. In the second part we give two classes of differentially low-uniform functions obtained by modifying the inverse function. The first class of permutations (CCZ-inequivalent to the inverse) over a finite field $\mathbb{F}_{p^n}$ ($p$, an odd prime) is obtained from the composition of the inverse function with an order-$3$ cycle permutation, with differential uniformity $3$ if $p=3$ and $n$ is odd; $5$ if $p=13$ and $n$ is even; and $4$ otherwise. The second class is a family of binomials and we show that their differential uniformity equals~$4$. We next complete the open case of $p=3$ in the investigation started by G\" olo\u glu and McGuire (2014), for $p\geq 5$, and continued by K\"olsch (2021), for $p=2$, $n\geq 5$, on the characterization of $L_1(X^{p^n-2})+L_2(X)$ (with linearized $L_1,L_2$) being a permutation polynomial. Finally, we extend to odd characteristic a result of Charpin and Kyureghyan (2010) providing an upper bound for the differential uniformity of the function and its switched version via a trace function.

相關內容

We propose a novel algorithm for the support estimation of partially known Gaussian graphical models that incorporates prior information about the underlying graph. In contrast to classical approaches that provide a point estimate based on a maximum likelihood or a maximum a posteriori criterion using (simple) priors on the precision matrix, we consider a prior on the graph and rely on annealed Langevin diffusion to generate samples from the posterior distribution. Since the Langevin sampler requires access to the score function of the underlying graph prior, we use graph neural networks to effectively estimate the score from a graph dataset (either available beforehand or generated from a known distribution). Numerical experiments demonstrate the benefits of our approach.

Open sets are central to mathematics, especially analysis and topology, in ways few notions are. In most, if not all, computational approaches to mathematics, open sets are only studied indirectly via their 'codes' or 'representations'. In this paper, we study how hard it is to compute, given an arbitrary open set of reals, the most common representation, i.e. a countable set of open intervals. We work in Kleene's higher-order computability theory, which was historically based on the S1-S9 schemes and which now has an intuitive lambda calculus formulation due to the authors. We establish many computational equivalences between on one hand the 'structure' functional that converts open sets to the aforementioned representation, and on the other hand functionals arising from mainstream mathematics, like basic properties of semi-continuous functions, the Urysohn lemma, and the Tietze extension theorem. We also compare these functionals to known operations on regulated and bounded variation functions, and the Lebesgue measure restricted to closed sets. We obtain a number of natural computational equivalences for the latter involving theorems from mainstream mathematics.

We present a novel combination of dynamic embedded topic models and change-point detection to explore diachronic change of lexical semantic modality in classical and early Christian Latin. We demonstrate several methods for finding and characterizing patterns in the output, and relating them to traditional scholarship in Comparative Literature and Classics. This simple approach to unsupervised models of semantic change can be applied to any suitable corpus, and we conclude with future directions and refinements aiming to allow noisier, less-curated materials to meet that threshold.

We study two numerical approximations of solutions of nonlocal diffusion evolution problems which are inspired in algorithms for computing the bilateral denoising filtering of an image, and which are based on functional rearrangements and on the Fourier transform. Apart from the usual time-space discretization, these algorithms also use the discretization of the range of the solution (quantization). We show that the discrete approximations converge to the continuous solution in suitable functional spaces, and provide error estimates. Finally, we present some numerical experiments illustrating the performance of the algorithms, specially focusing in the execution time.

In this paper, we provide conditions that hulls of generalized Reed-Solomon (GRS) codes are also GRS codes from algebraic geometry codes. If the conditions are not satisfied, we provide a method of linear algebra to find the bases of hulls of GRS codes and give formulas to compute their dimensions. Besides, we explain that the conditions are too good to be improved by some examples. Moreover, we show self-orthogonal and self-dual GRS codes.

In this work we investigate the Weihrauch degree of the problem $\mathsf{DS}$ of finding an infinite descending sequence through a given ill-founded linear order, which is shared by the problem $\mathsf{BS}$ of finding a bad sequence through a given non-well quasi-order. We show that $\mathsf{DS}$, despite being hard to solve (it has computable inputs with no hyperarithmetic solution), is rather weak in terms of uniform computational strength. To make the latter precise, we introduce the notion of the deterministic part of a Weihrauch degree. We then generalize $\mathsf{DS}$ and $\mathsf{BS}$ by considering $\boldsymbol{\Gamma}$-presented orders, where $\boldsymbol{\Gamma}$ is a Borel pointclass or $\boldsymbol{\Delta}^1_1$, $\boldsymbol{\Sigma}^1_1$, $\boldsymbol{\Pi}^1_1$. We study the obtained $\mathsf{DS}$-hierarchy and $\mathsf{BS}$-hierarchy of problems in comparison with the (effective) Baire hierarchy and show that they do not collapse at any finite level.

In this paper we develop a classical algorithm of complexity $O(2^n)$ to simulate parametrized quantum circuits (PQCs) of $n$ qubits. The algorithm is developed by finding $2$-sparse unitary matrices of order $2^n$ explicitly corresponding to any single-qubit and two-qubit control gates in an $n$-qubit system. Finally, we determine analytical expression of Hamiltonians for any such gate and consequently a local Hamiltonian decomposition of any PQC is obtained. All results are validated with numerical simulations.

We propose a new stabilised finite element method for the classical Kolmogorov equation. The latter serves as a basic model problem for large classes of kinetic-type equations and, crucially, is characterised by degenerate diffusion. The stabilisation is constructed so that the resulting method admits a \emph{numerical hypocoercivity} property, analogous to the corresponding property of the PDE problem. More specifically, the stabilisation is constructed so that spectral gap is possible in the resulting ``stronger-than-energy'' stabilisation norm, despite the degenerate nature of the diffusion in Kolmogorov, thereby the method has a provably robust behaviour as the ``time'' variable goes to infinity. We consider both a spatially discrete version of the stabilised finite element method and a fully discrete version, with the time discretisation realised by discontinuous Galerkin timestepping. Both stability and a priori error bounds are proven in all cases. Numerical experiments verify the theoretical findings.

This work proposes a novel variational approximation of partial differential equations on moving geometries determined by explicit boundary representations. The benefits of the proposed formulation are the ability to handle large displacements of explicitly represented domain boundaries without generating body-fitted meshes and remeshing techniques. For the space discretization, we use a background mesh and an unfitted method that relies on integration on cut cells only. We perform this intersection by using clipping algorithms. To deal with the mesh movement, we pullback the equations to a reference configuration (the spatial mesh at the initial time slab times the time interval) that is constant in time. This way, the geometrical intersection algorithm is only required in 3D, another key property of the proposed scheme. At the end of the time slab, we compute the deformed mesh, intersect the deformed boundary with the background mesh, and consider an exact transfer operator between meshes to compute jump terms in the time discontinuous Galerkin integration. The transfer is also computed using geometrical intersection algorithms. We demonstrate the applicability of the method to fluid problems around rotating (2D and 3D) geometries described by oriented boundary meshes. We also provide a set of numerical experiments that show the optimal convergence of the method.

In this paper, we introduce new generalized barycentric coordinates (coined as {\em moment coordinates}) on nonconvex quadrilaterals and convex hexahedra with planar faces. This work draws on recent advances in constructing interpolants to describe the motion of the Filippov sliding vector field in nonsmooth dynamical systems, in which nonnegative solutions of signed matrices based on (partial) distances are studied. For a finite element with $n$ vertices (nodes) in $\mathbb{R}^2$, the constant and linear reproducing conditions are supplemented with additional linear moment equations to set up a linear system of equations of full rank $n$, whose solution results in the nonnegative shape functions. On a simple (convex or nonconvex) quadrilateral, moment coordinates using signed distances are identical to mean value coordinates. For signed weights that are based on the product of distances to edges that are incident to a vertex and their edge lengths, we recover Wachspress coordinates on a convex quadrilateral. Moment coordinates are also constructed on a convex hexahedra with planar faces. We present proofs in support of the construction and plots of the shape functions that affirm its properties.

北京阿比特科技有限公司