Open sets are central to mathematics, especially analysis and topology, in ways few notions are. In most, if not all, computational approaches to mathematics, open sets are only studied indirectly via their 'codes' or 'representations'. In this paper, we study how hard it is to compute, given an arbitrary open set of reals, the most common representation, i.e. a countable set of open intervals. We work in Kleene's higher-order computability theory, which was historically based on the S1-S9 schemes and which now has an intuitive lambda calculus formulation due to the authors. We establish many computational equivalences between on one hand the 'structure' functional that converts open sets to the aforementioned representation, and on the other hand functionals arising from mainstream mathematics, like basic properties of semi-continuous functions, the Urysohn lemma, and the Tietze extension theorem. We also compare these functionals to known operations on regulated and bounded variation functions, and the Lebesgue measure restricted to closed sets. We obtain a number of natural computational equivalences for the latter involving theorems from mainstream mathematics.
We often rely on censuses of triangulations to guide our intuition in $3$-manifold topology. However, this can lead to misplaced faith in conjectures if the smallest counterexamples are too large to appear in our census. Since the number of triangulations increases super-exponentially with size, there is no way to expand a census beyond relatively small triangulations; the current census only goes up to $10$ tetrahedra. Here, we show that it is feasible to search for large and hard-to-find counterexamples by using heuristics to selectively (rather than exhaustively) enumerate triangulations. We use this idea to find counterexamples to three conjectures which ask, for certain $3$-manifolds, whether one-vertex triangulations always have a "distinctive" edge that would allow us to recognise the $3$-manifold.
Graph neural networks (GNNs) are the predominant architectures for a variety of learning tasks on graphs. We present a new angle on the expressive power of GNNs by studying how the predictions of a GNN probabilistic classifier evolve as we apply it on larger graphs drawn from some random graph model. We show that the output converges to a constant function, which upper-bounds what these classifiers can express uniformly. This convergence phenomenon applies to a very wide class of GNNs, including state of the art models, with aggregates including mean and the attention-based mechanism of graph transformers. Our results apply to a broad class of random graph models, including the (sparse) Erd\H{o}s-R\'enyi model and the stochastic block model. We empirically validate these findings, observing that the convergence phenomenon already manifests itself on graphs of relatively modest size.
With the increasing availability of large scale datasets, computational power and tools like automatic differentiation and expressive neural network architectures, sequential data are now often treated in a data-driven way, with a dynamical model trained from the observation data. While neural networks are often seen as uninterpretable black-box architectures, they can still benefit from physical priors on the data and from mathematical knowledge. In this paper, we use a neural network architecture which leverages the long-known Koopman operator theory to embed dynamical systems in latent spaces where their dynamics can be described linearly, enabling a number of appealing features. We introduce methods that enable to train such a model for long-term continuous reconstruction, even in difficult contexts where the data comes in irregularly-sampled time series. The potential for self-supervised learning is also demonstrated, as we show the promising use of trained dynamical models as priors for variational data assimilation techniques, with applications to e.g. time series interpolation and forecasting.
Necessary and sufficient conditions of uniform consistency are explored. A hypothesis is simple. Nonparametric sets of alternatives are bounded convex sets in $\mathbb{L}_p$, $p >1$ with "small" balls deleted. The "small" balls have the center at the point of hypothesis and radii of balls tend to zero as sample size increases. For problem of hypothesis testing on a density, we show that, for the sets of alternatives, there are uniformly consistent tests for some sequence of radii of the balls, if and only if, convex set is relatively compact. The results are established for problem of hypothesis testing on a density, for signal detection in Gaussian white noise, for linear ill-posed problems with random Gaussian noise and so on.
As the development of formal proofs is a time-consuming task, it is important to devise ways of sharing the already written proofs to prevent wasting time redoing them. One of the challenges in this domain is to translate proofs written in proof assistants based on impredicative logics to proof assistants based on predicative logics, whenever impredicativity is not used in an essential way. In this paper we present a transformation for sharing proofs with a core predicative system supporting prenex universe polymorphism (like in Agda). It consists in trying to elaborate each term into a predicative universe polymorphic term as general as possible. The use of universe polymorphism is justified by the fact that mapping each universe to a fixed one in the target theory is not sufficient in most cases. During the elaboration, we need to solve unification problems in the equational theory of universe levels. In order to do this, we give a complete characterization of when a single equation admits a most general unifier. This characterization is then employed in a partial algorithm which uses a constraint-postponement strategy for trying to solve unification problems. The proposed translation is of course partial, but in practice allows one to translate many proofs that do not use impredicativity in an essential way. Indeed, it was implemented in the tool Predicativize and then used to translate semi-automatically many non-trivial developments from Matita's library to Agda, including proofs of Bertrand's Postulate and Fermat's Little Theorem, which (as far as we know) were not available in Agda yet.
We introduce a single-set axiomatisation of cubical $\omega$-categories, including connections and inverses. We justify these axioms by establishing a series of equivalences between the category of single-set cubical $\omega$-categories, and their variants with connections and inverses, and the corresponding cubical $\omega$-categories. We also report on the formalisation of cubical $\omega$-categories with the Isabelle/HOL proof assistant, which has been instrumental in finding the single-set axioms.
It has been shown that deep neural networks of a large enough width are universal approximators but they are not if the width is too small. There were several attempts to characterize the minimum width $w_{\min}$ enabling the universal approximation property; however, only a few of them found the exact values. In this work, we show that the minimum width for $L^p$ approximation of $L^p$ functions from $[0,1]^{d_x}$ to $\mathbb R^{d_y}$ is exactly $\max\{d_x,d_y,2\}$ if an activation function is ReLU-Like (e.g., ReLU, GELU, Softplus). Compared to the known result for ReLU networks, $w_{\min}=\max\{d_x+1,d_y\}$ when the domain is $\smash{\mathbb R^{d_x}}$, our result first shows that approximation on a compact domain requires smaller width than on $\smash{\mathbb R^{d_x}}$. We next prove a lower bound on $w_{\min}$ for uniform approximation using general activation functions including ReLU: $w_{\min}\ge d_y+1$ if $d_x<d_y\le2d_x$. Together with our first result, this shows a dichotomy between $L^p$ and uniform approximations for general activation functions and input/output dimensions.
Iterated conditional expectation (ICE) g-computation is an estimation approach for addressing time-varying confounding for both longitudinal and time-to-event data. Unlike other g-computation implementations, ICE avoids the need to specify models for each time-varying covariate. For variance estimation, previous work has suggested the bootstrap. However, bootstrapping can be computationally intense and sensitive to the number of resamples used. Here, we present ICE g-computation as a set of stacked estimating equations. Therefore, the variance for the ICE g-computation estimator can be consistently estimated using the empirical sandwich variance estimator. Performance of the variance estimator was evaluated empirically with a simulation study. The proposed approach is also demonstrated with an illustrative example on the effect of cigarette smoking on the prevalence of hypertension. In the simulation study, the empirical sandwich variance estimator appropriately estimated the variance. When comparing runtimes between the sandwich variance estimator and the bootstrap for the applied example, the sandwich estimator was substantially faster, even when bootstraps were run in parallel. The empirical sandwich variance estimator is a viable option for variance estimation with ICE g-computation.
The fundamental computational issues in Bayesian inverse problems (BIP) governed by partial differential equations (PDEs) stem from the requirement of repeated forward model evaluations. A popular strategy to reduce such costs is to replace expensive model simulations with computationally efficient approximations using operator learning, motivated by recent progress in deep learning. However, using the approximated model directly may introduce a modeling error, exacerbating the already ill-posedness of inverse problems. Thus, balancing between accuracy and efficiency is essential for the effective implementation of such approaches. To this end, we develop an adaptive operator learning framework that can reduce modeling error gradually by forcing the surrogate to be accurate in local areas. This is accomplished by adaptively fine-tuning the pre-trained approximate model with train- ing points chosen by a greedy algorithm during the posterior computational process. To validate our approach, we use DeepOnet to construct the surrogate and unscented Kalman inversion (UKI) to approximate the BIP solution, respectively. Furthermore, we present a rigorous convergence guarantee in the linear case using the UKI framework. The approach is tested on a number of benchmarks, including the Darcy flow, the heat source inversion problem, and the reaction-diffusion problem. The numerical results show that our method can significantly reduce computational costs while maintaining inversion accuracy.
We consider linear problems in the worst case setting. That is, given a linear operator and a pool of admissible linear measurements, we want to approximate the values of the operator uniformly on a convex and balanced set by means of algorithms that use at most $n$ such measurements. It is known that, in general, linear algorithms do not yield an optimal approximation. However, as we show in this paper, an optimal approximation can always be obtained with a homogeneous algorithm. This is of interest to us for two reasons. First, the homogeneity allows us to extend any error bound on the unit ball to the full input space. Second, homogeneous algorithms are better suited to tackle problems on cones, a scenario that is far less understood than the classical situation of balls. We use the optimality of homogeneous algorithms to prove solvability for a family of problems defined on cones. We illustrate our results by several examples.