It has been shown that deep neural networks of a large enough width are universal approximators but they are not if the width is too small. There were several attempts to characterize the minimum width $w_{\min}$ enabling the universal approximation property; however, only a few of them found the exact values. In this work, we show that the minimum width for $L^p$ approximation of $L^p$ functions from $[0,1]^{d_x}$ to $\mathbb R^{d_y}$ is exactly $\max\{d_x,d_y,2\}$ if an activation function is ReLU-Like (e.g., ReLU, GELU, Softplus). Compared to the known result for ReLU networks, $w_{\min}=\max\{d_x+1,d_y\}$ when the domain is $\smash{\mathbb R^{d_x}}$, our result first shows that approximation on a compact domain requires smaller width than on $\smash{\mathbb R^{d_x}}$. We next prove a lower bound on $w_{\min}$ for uniform approximation using general activation functions including ReLU: $w_{\min}\ge d_y+1$ if $d_x<d_y\le2d_x$. Together with our first result, this shows a dichotomy between $L^p$ and uniform approximations for general activation functions and input/output dimensions.
We examine behavior in an experimental collaboration game that incorporates endogenous network formation. The environment is modeled as a generalization of the voluntary contributions mechanism. By varying the information structure in a controlled laboratory experiment, we examine the underlying mechanisms of reciprocity that generate emergent patterns in linking and contribution decisions. Providing players more detailed information about the sharing behavior of others drastically increases efficiency, and positively affects a number of other key outcomes. To understand the driving causes of these changes in behavior we develop and estimate a structural model for actions and small network panels and identify how social preferences affect behavior. We find that the treatment reduces altruism but stimulates reciprocity, helping players coordinate to reach mutually beneficial outcomes. In a set of counterfactual simulations, we show that increasing trust in the community would encourage higher average contributions at the cost of mildly increased free-riding. Increasing overall reciprocity greatly increases collaborative behavior when there is limited information but can backfire in the treatment, suggesting that negative reciprocity and punishment can reduce efficiency. The largest returns would come from an intervention that drives players away from negative and toward positive reciprocity.
While neural networks can enjoy an outstanding flexibility and exhibit unprecedented performance, the mechanism behind their behavior is still not well-understood. To tackle this fundamental challenge, researchers have tried to restrict and manipulate some of their properties in order to gain new insights and better control on them. Especially, throughout the past few years, the concept of \emph{bi-Lipschitzness} has been proved as a beneficial inductive bias in many areas. However, due to its complexity, the design and control of bi-Lipschitz architectures are falling behind, and a model that is precisely designed for bi-Lipschitzness realizing a direct and simple control of the constants along with solid theoretical analysis is lacking. In this work, we investigate and propose a novel framework for bi-Lipschitzness that can achieve such a clear and tight control based on convex neural networks and the Legendre-Fenchel duality. Its desirable properties are illustrated with concrete experiments. We also apply this framework to uncertainty estimation and monotone problem settings to illustrate its broad range of applications.
We consider the problem of reconstructing the symmetric difference between similar sets from their representations (sketches) of size linear in the number of differences. Exact solutions to this problem are based on error-correcting coding techniques and suffer from a large decoding time. Existing probabilistic solutions based on Invertible Bloom Lookup Tables (IBLTs) are time-efficient but offer insufficient success guarantees for many applications. Here we propose a tunable trade-off between the two approaches combining the efficiency of IBLTs with exponentially decreasing failure probability. The proof relies on a refined analysis of IBLTs proposed in (Baek Tejs Houen et al. SOSA 2023) which has an independent interest. We also propose a modification of our algorithm that enables telling apart the elements of each set in the symmetric difference.
Riemannian optimization is concerned with problems, where the independent variable lies on a smooth manifold. There is a number of problems from numerical linear algebra that fall into this category, where the manifold is usually specified by special matrix structures, such as orthogonality or definiteness. Following this line of research, we investigate tools for Riemannian optimization on the symplectic Stiefel manifold. We complement the existing set of numerical optimization algorithms with a Riemannian trust region method tailored to the symplectic Stiefel manifold. To this end, we derive a matrix formula for the Riemannian Hessian under a right-invariant metric. Moreover, we propose a novel retraction for approximating the Riemannian geodesics. Finally, we conduct a comparative study in which we juxtapose the performance of the Riemannian variants of the steepest descent, conjugate gradients, and trust region methods on selected matrix optimization problems that feature symplectic constraints.
We demonstrate that neural networks can be FLOP-efficient integrators of one-dimensional oscillatory integrands. We train a feed-forward neural network to compute integrals of highly oscillatory 1D functions. The training set is a parametric combination of functions with varying characters and oscillatory behavior degrees. Numerical examples show that these networks are FLOP-efficient for sufficiently oscillatory integrands with an average FLOP gain of 1000 FLOPs. The network calculates oscillatory integrals better than traditional quadrature methods under the same computational budget or number of floating point operations. We find that feed-forward networks of 5 hidden layers are satisfactory for a relative accuracy of 0.001. The computational burden of inference of the neural network is relatively small, even compared to inner-product pattern quadrature rules. We postulate that our result follows from learning latent patterns in the oscillatory integrands that are otherwise opaque to traditional numerical integrators.
Quantifying relationships between components of a complex system is critical to understanding the rich network of interactions that characterize the behavior of the system. Traditional methods for detecting pairwise dependence of time series, such as Pearson correlation, Granger causality, and mutual information, are computed directly in the space of measured time-series values. But for systems in which interactions are mediated by statistical properties of the time series (`time-series features') over longer timescales, this approach can fail to capture the underlying dependence from limited and noisy time-series data, and can be challenging to interpret. Addressing these issues, here we introduce an information-theoretic method for detecting dependence between time series mediated by time-series features that provides interpretable insights into the nature of the interactions. Our method extracts a candidate set of time-series features from sliding windows of the source time series and assesses their role in mediating a relationship to values of the target process. Across simulations of three different generative processes, we demonstrate that our feature-based approach can outperform a traditional inference approach based on raw time-series values, especially in challenging scenarios characterized by short time-series lengths, high noise levels, and long interaction timescales. Our work introduces a new tool for inferring and interpreting feature-mediated interactions from time-series data, contributing to the broader landscape of quantitative analysis in complex systems research, with potential applications in various domains including but not limited to neuroscience, finance, climate science, and engineering.
Boolean networks are extensively applied as models of complex dynamical systems, aiming at capturing essential features related to causality and synchronicity of the state changes of components along time. Dynamics of Boolean networks result from the application of their Boolean map according to a so-called update mode, specifying the possible transitions between network configurations. In this paper, we explore update modes that possess a memory on past configurations, and provide a generic framework to define them. We show that recently introduced modes such as the most permissive and interval modes can be naturally expressed in this framework. We propose novel update modes, the history-based and trapping modes, and provide a comprehensive comparison between them. Furthermore, we show that trapping dynamics, which further generalize the most permissive mode, correspond to a rich class of networks related to transitive dynamics and encompassing commutative networks. Finally, we provide a thorough characterization of the structure of minimal and principal trapspaces, bringing a combinatorial and algebraic understanding of these objects.
We propose a method for obtaining parsimonious decompositions of networks into higher order interactions which can take the form of arbitrary motifs.The method is based on a class of analytically solvable generative models, where vertices are connected via explicit copies of motifs, which in combination with non-parametric priors allow us to infer higher order interactions from dyadic graph data without any prior knowledge on the types or frequencies of such interactions. Crucially, we also consider 'degree--corrected' models that correctly reflect the degree distribution of the network and consequently prove to be a better fit for many real world--networks compared to non-degree corrected models. We test the presented approach on simulated data for which we recover the set of underlying higher order interactions to a high degree of accuracy. For empirical networks the method identifies concise sets of atomic subgraphs from within thousands of candidates that cover a large fraction of edges and include higher order interactions of known structural and functional significance. The method not only produces an explicit higher order representation of the network but also a fit of the network to analytically tractable models opening new avenues for the systematic study of higher order network structures.
In many communication contexts, the capabilities of the involved actors cannot be known beforehand, whether it is a cell, a plant, an insect, or even a life form unknown to Earth. Regardless of the recipient, the message space and time scale could be too fast, too slow, too large, or too small and may never be decoded. Therefore, it pays to devise a way to encode messages agnostic of space and time scales. We propose the use of fractal functions as self-executable infinite-frequency carriers for sending messages, given their properties of structural self-similarity and scale invariance. We call it `fractal messaging'. Starting from a spatial embedding, we introduce a framework for a space-time scale-free messaging approach to this challenge. When considering a space and time-agnostic framework for message transmission, it would be interesting to encode a message such that it could be decoded at several spatio-temporal scales. Hence, the core idea of the framework proposed herein is to encode a binary message as waves along infinitely many frequencies (in power-like distributions) and amplitudes, transmit such a message, and then decode and reproduce it. To do so, the components of the Weierstrass function, a known fractal, are used as carriers of the message. Each component will have its amplitude modulated to embed the binary stream, allowing for a space-time-agnostic approach to messaging.
Heterogeneity is a fundamental characteristic of cancer. To accommodate heterogeneity, subgroup identification has been extensively studied and broadly categorized into unsupervised and supervised analysis. Compared to unsupervised analysis, supervised approaches potentially hold greater clinical implications. Under the unsupervised analysis framework, several methods focusing on network-based subgroup identification have been developed, offering more comprehensive insights than those restricted to mean, variance, and other simplistic distributions by incorporating the interconnections among variables. However, research on supervised network-based subgroup identification remains limited. In this study, we develop a novel supervised Bayesian graphical model for jointly identifying multiple heterogeneous networks and subgroups. In the proposed model, heterogeneity is not only reflected in molecular data but also associated with a clinical outcome, and a novel similarity prior is introduced to effectively accommodate similarities among the networks of different subgroups, significantly facilitating clinically meaningful biological network construction and subgroup identification. The consistency properties of the estimates are rigorously established, and an efficient algorithm is developed. Extensive simulation studies and a real-world application to TCGA data are conducted, which demonstrate the advantages of the proposed approach in terms of both subgroup and network identification.