亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Quantifying relationships between components of a complex system is critical to understanding the rich network of interactions that characterize the behavior of the system. Traditional methods for detecting pairwise dependence of time series, such as Pearson correlation, Granger causality, and mutual information, are computed directly in the space of measured time-series values. But for systems in which interactions are mediated by statistical properties of the time series (`time-series features') over longer timescales, this approach can fail to capture the underlying dependence from limited and noisy time-series data, and can be challenging to interpret. Addressing these issues, here we introduce an information-theoretic method for detecting dependence between time series mediated by time-series features that provides interpretable insights into the nature of the interactions. Our method extracts a candidate set of time-series features from sliding windows of the source time series and assesses their role in mediating a relationship to values of the target process. Across simulations of three different generative processes, we demonstrate that our feature-based approach can outperform a traditional inference approach based on raw time-series values, especially in challenging scenarios characterized by short time-series lengths, high noise levels, and long interaction timescales. Our work introduces a new tool for inferring and interpreting feature-mediated interactions from time-series data, contributing to the broader landscape of quantitative analysis in complex systems research, with potential applications in various domains including but not limited to neuroscience, finance, climate science, and engineering.

相關內容

IFIP TC13 Conference on Human-Computer Interaction是人機交互領域的研究者和實踐者展示其工作的重要平臺。多年來,這些會議吸引了來自幾個國家和文化的研究人員。官網鏈接: · 極大 · INTERACT · 泛函 · 相似度 ·
2024 年 5 月 24 日

Bipartite graphs are a prevalent modeling tool for real-world networks, capturing interactions between vertices of two different types. Within this framework, bicliques emerge as crucial structures when studying dense subgraphs: they are sets of vertices such that all vertices of the first type interact with all vertices of the second type. Therefore, they allow identifying groups of closely related vertices of the network, such as individuals with similar interests or webpages with similar contents. This article introduces a new algorithm designed for the exhaustive enumeration of maximal bicliques within a bipartite graph. This algorithm, called BBK for Bipartite Bron-Kerbosch, is a new extension to the bipartite case of the Bron-Kerbosch algorithm, which enumerates the maximal cliques in standard (non-bipartite) graphs. It is faster than the state-of-the-art algorithms and allows the enumeration on massive bipartite graphs that are not manageable with existing implementations. We analyze it theoretically to establish two complexity formulas: one as a function of the input and one as a function of the output characteristics of the algorithm. We also provide an open-access implementation of BBK in C++, which we use to experiment and validate its efficiency on massive real-world datasets and show that its execution time is shorter in practice than state-of-the art algorithms. These experiments also show that the order in which the vertices are processed, as well as the choice of one of the two types of vertices on which to initiate the enumeration have an impact on the computation time.

Learning to Optimize (L2O) stands at the intersection of traditional optimization and machine learning, utilizing the capabilities of machine learning to enhance conventional optimization techniques. As real-world optimization problems frequently share common structures, L2O provides a tool to exploit these structures for better or faster solutions. This tutorial dives deep into L2O techniques, introducing how to accelerate optimization algorithms, promptly estimate the solutions, or even reshape the optimization problem itself, making it more adaptive to real-world applications. By considering the prerequisites for successful applications of L2O and the structure of the optimization problems at hand, this tutorial provides a comprehensive guide for practitioners and researchers alike.

Inference for functional linear models in the presence of heteroscedastic errors has received insufficient attention given its practical importance; in fact, even a central limit theorem has not been studied in this case. At issue, conditional mean estimates have complicated sampling distributions due to the infinite dimensional regressors, where truncation bias and scaling issues are compounded by non-constant variance under heteroscedasticity. As a foundation for distributional inference, we establish a central limit theorem for the estimated conditional mean under general dependent errors, and subsequently we develop a paired bootstrap method to provide better approximations of sampling distributions. The proposed paired bootstrap does not follow the standard bootstrap algorithm for finite dimensional regressors, as this version fails outside of a narrow window for implementation with functional regressors. The reason owes to a bias with functional regressors in a naive bootstrap construction. Our bootstrap proposal incorporates debiasing and thereby attains much broader validity and flexibility with truncation parameters for inference under heteroscedasticity; even when the naive approach may be valid, the proposed bootstrap method performs better numerically. The bootstrap is applied to construct confidence intervals for centered projections and for conducting hypothesis tests for the multiple conditional means. Our theoretical results on bootstrap consistency are demonstrated through simulation studies and also illustrated with a real data example.

Since the weak convergence for stochastic processes does not account for the growth of information over time which is represented by the underlying filtration, a slightly erroneous stochastic model in weak topology may cause huge loss in multi-periods decision making problems. To address such discontinuities Aldous introduced the extended weak convergence, which can fully characterise all essential properties, including the filtration, of stochastic processes; however was considered to be hard to find efficient numerical implementations. In this paper, we introduce a novel metric called High Rank PCF Distance (HRPCFD) for extended weak convergence based on the high rank path development method from rough path theory, which also defines the characteristic function for measure-valued processes. We then show that such HRPCFD admits many favourable analytic properties which allows us to design an efficient algorithm for training HRPCFD from data and construct the HRPCF-GAN by using HRPCFD as the discriminator for conditional time series generation. Our numerical experiments on both hypothesis testing and generative modelling validate the out-performance of our approach compared with several state-of-the-art methods, highlighting its potential in broad applications of synthetic time series generation and in addressing classic financial and economic challenges, such as optimal stopping or utility maximisation problems.

This work proposes a novel variational approximation of partial differential equations on moving geometries determined by explicit boundary representations. The benefits of the proposed formulation are the ability to handle large displacements of explicitly represented domain boundaries without generating body-fitted meshes and remeshing techniques. For the space discretization, we use a background mesh and an unfitted method that relies on integration on cut cells only. We perform this intersection by using clipping algorithms. To deal with the mesh movement, we pullback the equations to a reference configuration (the spatial mesh at the initial time slab times the time interval) that is constant in time. This way, the geometrical intersection algorithm is only required in 3D, another key property of the proposed scheme. At the end of the time slab, we compute the deformed mesh, intersect the deformed boundary with the background mesh, and consider an exact transfer operator between meshes to compute jump terms in the time discontinuous Galerkin integration. The transfer is also computed using geometrical intersection algorithms. We demonstrate the applicability of the method to fluid problems around rotating (2D and 3D) geometries described by oriented boundary meshes. We also provide a set of numerical experiments that show the optimal convergence of the method.

Existing approaches for device placement ignore the topological features of computation graphs and rely mostly on heuristic methods for graph partitioning. At the same time, they either follow a grouper-placer or an encoder-placer architecture, which requires understanding the interaction structure between code operations. To bridge the gap between encoder-placer and grouper-placer techniques, we propose a novel framework for the task of device placement, relying on smaller computation graphs extracted from the OpenVINO toolkit using reinforcement learning. The framework consists of five steps, including graph coarsening, node representation learning and policy optimization. It facilitates end-to-end training and takes into consideration the directed and acyclic nature of the computation graphs. We also propose a model variant, inspired by graph parsing networks and complex network analysis, enabling graph representation learning and personalized graph partitioning jointly, using an unspecified number of groups. To train the entire framework, we utilize reinforcement learning techniques by employing the execution time of the suggested device placements to formulate the reward. We demonstrate the flexibility and effectiveness of our approach through multiple experiments with three benchmark models, namely Inception-V3, ResNet, and BERT. The robustness of the proposed framework is also highlighted through an ablation study. The suggested placements improve the inference speed for the benchmark models by up to $58.2\%$ over CPU execution and by up to $60.24\%$ compared to other commonly used baselines.

Characteristic formulae give a complete logical description of the behaviour of processes modulo some chosen notion of behavioural semantics. They allow one to reduce equivalence or preorder checking to model checking, and are exactly the formulae in the modal logics characterizing classic behavioural equivalences and preorders for which model checking can be reduced to equivalence or preorder checking. This paper studies the complexity of determining whether a formula is characteristic for some finite, loop-free process in each of the logics providing modal characterizations of the simulation-based semantics in van Glabbeek's branching-time spectrum. Since characteristic formulae in each of those logics are exactly the consistent and prime ones, it presents complexity results for the satisfiability and primality problems, and investigates the boundary between modal logics for which those problems can be solved in polynomial time and those for which they become computationally hard. Amongst other contributions, this article also studies the complexity of constructing characteristic formulae in the modal logics characterizing simulation-based semantics, both when such formulae are presented in explicit form and via systems of equations.

The largest eigenvalue of the Hessian, or sharpness, of neural networks is a key quantity to understand their optimization dynamics. In this paper, we study the sharpness of deep linear networks for overdetermined univariate regression. Minimizers can have arbitrarily large sharpness, but not an arbitrarily small one. Indeed, we show a lower bound on the sharpness of minimizers, which grows linearly with depth. We then study the properties of the minimizer found by gradient flow, which is the limit of gradient descent with vanishing learning rate. We show an implicit regularization towards flat minima: the sharpness of the minimizer is no more than a constant times the lower bound. The constant depends on the condition number of the data covariance matrix, but not on width or depth. This result is proven both for a small-scale initialization and a residual initialization. Results of independent interest are shown in both cases. For small-scale initialization, we show that the learned weight matrices are approximately rank-one and that their singular vectors align. For residual initialization, convergence of the gradient flow for a Gaussian initialization of the residual network is proven. Numerical experiments illustrate our results and connect them to gradient descent with non-vanishing learning rate.

Multivariate probabilistic verification is concerned with the evaluation of joint probability distributions of vector quantities such as a weather variable at multiple locations or a wind vector for instance. The logarithmic score is a proper score that is useful in this context. In order to apply this score to ensemble forecasts, a choice for the density is required. Here, we are interested in the specific case when the density is multivariate normal with mean and covariance given by the ensemble mean and ensemble covariance, respectively. Under the assumptions of multivariate normality and exchangeability of the ensemble members, a relationship is derived which describes how the logarithmic score depends on ensemble size. It permits to estimate the score in the limit of infinite ensemble size from a small ensemble and thus produces a fair logarithmic score for multivariate ensemble forecasts under the assumption of normality. This generalises a study from 2018 which derived the ensemble size adjustment of the logarithmic score in the univariate case. An application to medium-range forecasts examines the usefulness of the ensemble size adjustments when multivariate normality is only an approximation. Predictions of vectors consisting of several different combinations of upper air variables are considered. Logarithmic scores are calculated for these vectors using ECMWF's daily extended-range forecasts which consist of a 100-member ensemble. The probabilistic forecasts of these vectors are verified against operational ECMWF analyses in the Northern mid-latitudes in autumn 2023. Scores are computed for ensemble sizes from 8 to 100. The fair logarithmic scores of ensembles with different cardinalities are very close, in contrast to the unadjusted scores which decrease considerably with ensemble size. This provides evidence for the practical usefulness of the derived relationships.

Mobile devices and the Internet of Things (IoT) devices nowadays generate a large amount of heterogeneous spatial-temporal data. It remains a challenging problem to model the spatial-temporal dynamics under privacy concern. Federated learning (FL) has been proposed as a framework to enable model training across distributed devices without sharing original data which reduce privacy concern. Personalized federated learning (PFL) methods further address data heterogenous problem. However, these methods don't consider natural spatial relations among nodes. For the sake of modeling spatial relations, Graph Neural Netowork (GNN) based FL approach have been proposed. But dynamic spatial-temporal relations among edge nodes are not taken into account. Several approaches model spatial-temporal dynamics in a centralized environment, while less effort has been made under federated setting. To overcome these challeges, we propose a novel Federated Adaptive Spatial-Temporal Attention (FedASTA) framework to model the dynamic spatial-temporal relations. On the client node, FedASTA extracts temporal relations and trend patterns from the decomposed terms of original time series. Then, on the server node, FedASTA utilize trend patterns from clients to construct adaptive temporal-spatial aware graph which captures dynamic correlation between clients. Besides, we design a masked spatial attention module with both static graph and constructed adaptive graph to model spatial dependencies among clients. Extensive experiments on five real-world public traffic flow datasets demonstrate that our method achieves state-of-art performance in federated scenario. In addition, the experiments made in centralized setting show the effectiveness of our novel adaptive graph construction approach compared with other popular dynamic spatial-temporal aware methods.

北京阿比特科技有限公司