亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This work proposes a novel variational approximation of partial differential equations on moving geometries determined by explicit boundary representations. The benefits of the proposed formulation are the ability to handle large displacements of explicitly represented domain boundaries without generating body-fitted meshes and remeshing techniques. For the space discretization, we use a background mesh and an unfitted method that relies on integration on cut cells only. We perform this intersection by using clipping algorithms. To deal with the mesh movement, we pullback the equations to a reference configuration (the spatial mesh at the initial time slab times the time interval) that is constant in time. This way, the geometrical intersection algorithm is only required in 3D, another key property of the proposed scheme. At the end of the time slab, we compute the deformed mesh, intersect the deformed boundary with the background mesh, and consider an exact transfer operator between meshes to compute jump terms in the time discontinuous Galerkin integration. The transfer is also computed using geometrical intersection algorithms. We demonstrate the applicability of the method to fluid problems around rotating (2D and 3D) geometries described by oriented boundary meshes. We also provide a set of numerical experiments that show the optimal convergence of the method.

相關內容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI雜志。 Publisher:Elsevier。 SIT:

We propose a numerical method to solve parameter-dependent hyperbolic partial differential equations (PDEs) with a moment approach, based on a previous work from Marx et al. (2020). This approach relies on a very weak notion of solution of nonlinear equations, namely parametric entropy measure-valued (MV) solutions, satisfying linear equations in the space of Borel measures. The infinite-dimensional linear problem is approximated by a hierarchy of convex, finite-dimensional, semidefinite programming problems, called Lasserre's hierarchy. This gives us a sequence of approximations of the moments of the occupation measure associated with the parametric entropy MV solution, which is proved to converge. In the end, several post-treatments can be performed from this approximate moments sequence. In particular, the graph of the solution can be reconstructed from an optimization of the Christoffel-Darboux kernel associated with the approximate measure, that is a powerful approximation tool able to capture a large class of irregular functions. Also, for uncertainty quantification problems, several quantities of interest can be estimated, sometimes directly such as the expectation of smooth functionals of the solutions. The performance of our approach is evaluated through numerical experiments on the inviscid Burgers equation with parametrised initial conditions or parametrised flux function.

This work highlights an approach for incorporating realistic uncertainties into scientific computing workflows based on finite elements, focusing on applications in computational mechanics and design optimization. We leverage Mat\'ern-type Gaussian random fields (GRFs) generated using the SPDE method to model aleatoric uncertainties, including environmental influences, variating material properties, and geometric ambiguities. Our focus lies on delivering practical GRF realizations that accurately capture imperfections and variations and understanding how they impact the predictions of computational models and the topology of optimized designs. We describe a numerical algorithm based on solving a generalized SPDE to sample GRFs on arbitrary meshed domains. The algorithm leverages established techniques and integrates seamlessly with the open-source finite element library MFEM and associated scientific computing workflows, like those found in industrial and national laboratory settings. Our solver scales efficiently for large-scale problems and supports various domain types, including surfaces and embedded manifolds. We showcase its versatility through biomechanics and topology optimization applications. The flexibility and efficiency of SPDE-based GRF generation empower us to run large-scale optimization problems on 2D and 3D domains, including finding optimized designs on embedded surfaces, and to generate topologies beyond the reach of conventional techniques. Moreover, these capabilities allow us to model geometric uncertainties of reconstructed submanifolds, such as the surfaces of cerebral aneurysms. In addition to offering benefits in these specific domains, the proposed techniques transcend specific applications and generalize to arbitrary forward and backward problems in uncertainty quantification involving finite elements.

A component-splitting method is proposed to improve convergence characteristics for implicit time integration of compressible multicomponent reactive flows. The characteristic decomposition of flux jacobian of multicomponent Navier-Stokes equations yields a large sparse eigensystem, presenting challenges of slow convergence and high computational costs for implicit methods. To addresses this issue, the component-splitting method segregates the implicit operator into two parts: one for the flow equations (density/momentum/energy) and the other for the component equations. Each part's implicit operator employs flux-vector splitting based on their respective spectral radii to achieve accelerated convergence. This approach improves the computational efficiency of implicit iteration, mitigating the quadratic increase in time cost with the number of species. Two consistence corrections are developed to reduce the introduced component-splitting error and ensure the numerical consistency of mass fraction. Importantly, the impact of component-splitting method on accuracy is minimal as the residual approaches convergence. The accuracy, efficiency, and robustness of component-splitting method are thoroughly investigated and compared with the coupled implicit scheme through several numerical cases involving thermo-chemical nonequilibrium hypersonic flows. The results demonstrate that the component-splitting method decreases the required number of iteration steps for convergence of residual and wall heat flux, decreases the computation time per iteration step, and diminishes the residual to lower magnitude. The acceleration efficiency is enhanced with increases in CFL number and number of species.

For problems of time-harmonic scattering by rational polygonal obstacles, embedding formulae express the far-field pattern induced by any incident plane wave in terms of the far-field patterns for a relatively small (frequency-independent) set of canonical incident angles. Although these remarkable formulae are exact in theory, here we demonstrate that: (i) they are highly sensitive to numerical errors in practice, and (ii) direct calculation of the coefficients in these formulae may be impossible for particular sets of canonical incident angles, even in exact arithmetic. Only by overcoming these practical issues can embedding formulae provide a highly efficient approach to computing the far-field pattern induced by a large number of incident angles. Here we address challenges (i) and (ii), supporting our theory with numerical experiments. Challenge (i) is solved using techniques from computational complex analysis: we reformulate the embedding formula as a complex contour integral and prove that this is much less sensitive to numerical errors. In practice, this contour integral can be efficiently evaluated by residue calculus. Challenge (ii) is addressed using techniques from numerical linear algebra: we oversample, considering more canonical incident angles than are necessary, thus expanding the set of valid coefficient vectors. The coefficient vector can then be selected using either a least squares approach or column subset selection.

Deep learning methods have access to be employed for solving physical systems governed by parametric partial differential equations (PDEs) due to massive scientific data. It has been refined to operator learning that focuses on learning non-linear mapping between infinite-dimensional function spaces, offering interface from observations to solutions. However, state-of-the-art neural operators are limited to constant and uniform discretization, thereby leading to deficiency in generalization on arbitrary discretization schemes for computational domain. In this work, we propose a novel operator learning algorithm, referred to as Dynamic Gaussian Graph Operator (DGGO) that expands neural operators to learning parametric PDEs in arbitrary discrete mechanics problems. The Dynamic Gaussian Graph (DGG) kernel learns to map the observation vectors defined in general Euclidean space to metric vectors defined in high-dimensional uniform metric space. The DGG integral kernel is parameterized by Gaussian kernel weighted Riemann sum approximating and using dynamic message passing graph to depict the interrelation within the integral term. Fourier Neural Operator is selected to localize the metric vectors on spatial and frequency domains. Metric vectors are regarded as located on latent uniform domain, wherein spatial and spectral transformation offer highly regular constraints on solution space. The efficiency and robustness of DGGO are validated by applying it to solve numerical arbitrary discrete mechanics problems in comparison with mainstream neural operators. Ablation experiments are implemented to demonstrate the effectiveness of spatial transformation in the DGG kernel. The proposed method is utilized to forecast stress field of hyper-elastic material with geometrically variable void as engineering application.

The consistency of the maximum likelihood estimator for mixtures of elliptically-symmetric distributions for estimating its population version is shown, where the underlying distribution $P$ is nonparametric and does not necessarily belong to the class of mixtures on which the estimator is based. In a situation where $P$ is a mixture of well enough separated but nonparametric distributions it is shown that the components of the population version of the estimator correspond to the well separated components of $P$. This provides some theoretical justification for the use of such estimators for cluster analysis in case that $P$ has well separated subpopulations even if these subpopulations differ from what the mixture model assumes.

We prove non-asymptotic error bounds for particle gradient descent (PGD)~(Kuntz et al., 2023), a recently introduced algorithm for maximum likelihood estimation of large latent variable models obtained by discretizing a gradient flow of the free energy. We begin by showing that, for models satisfying a condition generalizing both the log-Sobolev and the Polyak--{\L}ojasiewicz inequalities (LSI and P{\L}I, respectively), the flow converges exponentially fast to the set of minimizers of the free energy. We achieve this by extending a result well-known in the optimal transport literature (that the LSI implies the Talagrand inequality) and its counterpart in the optimization literature (that the P{\L}I implies the so-called quadratic growth condition), and applying it to our new setting. We also generalize the Bakry--\'Emery Theorem and show that the LSI/P{\L}I generalization holds for models with strongly concave log-likelihoods. For such models, we further control PGD's discretization error, obtaining non-asymptotic error bounds. While we are motivated by the study of PGD, we believe that the inequalities and results we extend may be of independent interest.

The main respiratory muscle, the diaphragm, is an example of a thin structure. We aim to perform detailed numerical simulations of the muscle mechanics based on individual patient data. This requires a representation of the diaphragm geometry extracted from medical image data. We design an adaptive reconstruction method based on a least-squares radial basis function partition of unity method. The method is adapted to thin structures by subdividing the structure rather than the surrounding space, and by introducing an anisotropic scaling of local subproblems. The resulting representation is an infinitely smooth level set function, which is stabilized such that there are no spurious zero level sets. We show reconstruction results for 2D cross sections of the diaphragm geometry as well as for the full 3D geometry. We also show solutions to basic PDE test problems in the reconstructed geometries.

This paper presents a method for thematic agreement assessment of geospatial data products of different semantics and spatial granularities, which may be affected by spatial offsets between test and reference data. The proposed method uses a multi-scale framework allowing for a probabilistic evaluation whether thematic disagreement between datasets is induced by spatial offsets due to different nature of the datasets or not. We test our method using real-estate derived settlement locations and remote-sensing derived building footprint data.

The theory of mixed finite element methods for solving different types of elliptic partial differential equations in saddle point formulation is well established since many decades. This topic was mostly studied for variational formulations defined upon the same product spaces of both shape- and test-pairs of primal variable-multiplier. Whenever either these spaces or the two bilinear forms involving the multiplier are distinct, the saddle point problem is asymmetric. The three inf-sup conditions to be satisfied by the product spaces stipulated in work on the subject, in order to guarantee well-posedness, are well known. However, the material encountered in the literature addressing the approximation of this class of problems left room for improvement and clarifications. After making a brief review of the existing contributions to the topic that justifies such an assertion, in this paper we set up finer global error bounds for the pair primal variable-multiplier solving an asymmetric saddle point problem. Besides well-posedness, the three constants in the aforementioned inf-sup conditions are identified as all that is needed for determining the stability constant appearing therein, whose expression is exhibited. As a complement, refined error bounds depending only on these three constants are given for both unknowns separately.

北京阿比特科技有限公司