Deep learning methods have access to be employed for solving physical systems governed by parametric partial differential equations (PDEs) due to massive scientific data. It has been refined to operator learning that focuses on learning non-linear mapping between infinite-dimensional function spaces, offering interface from observations to solutions. However, state-of-the-art neural operators are limited to constant and uniform discretization, thereby leading to deficiency in generalization on arbitrary discretization schemes for computational domain. In this work, we propose a novel operator learning algorithm, referred to as Dynamic Gaussian Graph Operator (DGGO) that expands neural operators to learning parametric PDEs in arbitrary discrete mechanics problems. The Dynamic Gaussian Graph (DGG) kernel learns to map the observation vectors defined in general Euclidean space to metric vectors defined in high-dimensional uniform metric space. The DGG integral kernel is parameterized by Gaussian kernel weighted Riemann sum approximating and using dynamic message passing graph to depict the interrelation within the integral term. Fourier Neural Operator is selected to localize the metric vectors on spatial and frequency domains. Metric vectors are regarded as located on latent uniform domain, wherein spatial and spectral transformation offer highly regular constraints on solution space. The efficiency and robustness of DGGO are validated by applying it to solve numerical arbitrary discrete mechanics problems in comparison with mainstream neural operators. Ablation experiments are implemented to demonstrate the effectiveness of spatial transformation in the DGG kernel. The proposed method is utilized to forecast stress field of hyper-elastic material with geometrically variable void as engineering application.
We propose an efficient implementation of the numerical tensor-train (TT) based algorithm solving the multicomponent coagulation equation preserving the nonnegativeness of solution. Unnatural negative elements in the constructed approximation arise due to the errors of the low-rank decomposition and discretization scheme. In this work, we propose to apply the rank-one corrections in the TT-format proportional to the minimal negative element. Such an element can be found via application of the global optimization methods that can be fully implemented within efficient operations in the tensor train format. We incorporate this trick into the time-integration scheme for the multicomponent coagulation equation and also use it for post-processing of the stationary solution for the problem with the source of particles.
In the present study, we consider the numerical method for Toeplitz-like linear systems arising from the $d$-dimensional Riesz space fractional diffusion equations (RSFDEs). We apply the Crank-Nicolson (CN) technique to discretize the temporal derivative and apply a quasi-compact finite difference method to discretize the Riesz space fractional derivatives. For the $d$-dimensional problem, the corresponding coefficient matrix is the sum of a product of a (block) tridiagonal matrix multiplying a diagonal matrix and a $d$-level Toeplitz matrix. We develop a sine transform based preconditioner to accelerate the convergence of the GMRES method. Theoretical analyses show that the upper bound of relative residual norm of the preconditioned GMRES method with the proposed preconditioner is mesh-independent, which leads to a linear convergence rate. Numerical results are presented to confirm the theoretical results regarding the preconditioned matrix and to illustrate the efficiency of the proposed preconditioner.
One of the key elements of probabilistic seismic risk assessment studies is the fragility curve, which represents the conditional probability of failure of a mechanical structure for a given scalar measure derived from seismic ground motion. For many structures of interest, estimating these curves is a daunting task because of the limited amount of data available; data which is only binary in our framework, i.e., only describing the structure as being in a failure or non-failure state. A large number of methods described in the literature tackle this challenging framework through parametric log-normal models. Bayesian approaches, on the other hand, allow model parameters to be learned more efficiently. However, the impact of the choice of the prior distribution on the posterior distribution cannot be readily neglected and, consequently, neither can its impact on any resulting estimation. This paper proposes a comprehensive study of this parametric Bayesian estimation problem for limited and binary data. Using the reference prior theory as a cornerstone, this study develops an objective approach to choosing the prior. This approach leads to the Jeffreys prior, which is derived for this problem for the first time. The posterior distribution is proven to be proper with the Jeffreys prior but improper with some traditional priors found in the literature. With the Jeffreys prior, the posterior distribution is also shown to vanish at the boundaries of the parameters' domain, which means that sampling the posterior distribution of the parameters does not result in anomalously small or large values. Therefore, the use of the Jeffreys prior does not result in degenerate fragility curves such as unit-step functions, and leads to more robust credibility intervals. The numerical results obtained from different case studies-including an industrial example-illustrate the theoretical predictions.
We introduce a high-dimensional cubical complex, for any dimension t>0, and apply it to the design of quantum locally testable codes. Our complex is a natural generalization of the constructions by Panteleev and Kalachev and by Dinur et. al of a square complex (case t=2), which have been applied to the design of classical locally testable codes (LTC) and quantum low-density parity check codes (qLDPC) respectively. We turn the geometric (cubical) complex into a chain complex by relying on constant-sized local codes $h_1,\ldots,h_t$ as gadgets. A recent result of Panteleev and Kalachev on existence of tuples of codes that are product expanding enables us to prove lower bounds on the cycle and co-cycle expansion of our chain complex. For t=4 our construction gives a new family of "almost-good" quantum LTCs -- with constant relative rate, inverse-polylogarithmic relative distance and soundness, and constant-size parity checks. Both the distance of the quantum code and its local testability are proven directly from the cycle and co-cycle expansion of our chain complex.
We present a novel numerical method for solving the anisotropic diffusion equation in magnetic fields confined to a periodic box which is accurate and provably stable. We derive energy estimates of the solution of the continuous initial boundary value problem. A discrete formulation is presented using operator splitting in time with the summation by parts finite difference approximation of spatial derivatives for the perpendicular diffusion operator. Weak penalty procedures are derived for implementing both boundary conditions and parallel diffusion operator obtained by field line tracing. We prove that the fully-discrete approximation is unconditionally stable. Discrete energy estimates are shown to match the continuous energy estimate given the correct choice of penalty parameters. A nonlinear penalty parameter is shown to provide an effective method for tuning the parallel diffusion penalty and significantly minimises rounding errors. Several numerical experiments, using manufactured solutions, the ``NIMROD benchmark'' problem and a single island problem, are presented to verify numerical accuracy, convergence, and asymptotic preserving properties of the method. Finally, we present a magnetic field with chaotic regions and islands and show the contours of the anisotropic diffusion equation reproduce key features in the field.
We present a spectral method for one-sided linear fractional integral equations on a closed interval that achieves exponentially fast convergence for a variety of equations, including ones with irrational order, multiple fractional orders, non-trivial variable coefficients, and initial-boundary conditions. The method uses an orthogonal basis that we refer to as Jacobi fractional polynomials, which are obtained from an appropriate change of variable in weighted classical Jacobi polynomials. New algorithms for building the matrices used to represent fractional integration operators are presented and compared. Even though these algorithms are unstable and require the use of high-precision computations, the spectral method nonetheless yields well-conditioned linear systems and is therefore stable and efficient. For time-fractional heat and wave equations, we show that our method (which is not sparse but uses an orthogonal basis) outperforms a sparse spectral method (which uses a basis that is not orthogonal) due to its superior stability.
This chapter explores the role of patent protection in algorithmic surveillance and whether ordre public exceptions from patentability should apply to such patents, due to their potential to enable human rights violations. It concludes that in most cases, it is undesirable to exclude algorithmic surveillance patents from patentability, as the patent system is ill-equipped to evaluate the impacts of the exploitation of such technologies. Furthermore, the disclosure of such patents has positive externalities from the societal perspective by opening the black box of surveillance for public scrutiny.
This work presents a comparative review and classification between some well-known thermodynamically consistent models of hydrogel behavior in a large deformation setting, specifically focusing on solvent absorption/desorption and its impact on mechanical deformation and network swelling. The proposed discussion addresses formulation aspects, general mathematical classification of the governing equations, and numerical implementation issues based on the finite element method. The theories are presented in a unified framework demonstrating that, despite not being evident in some cases, all of them follow equivalent thermodynamic arguments. A detailed numerical analysis is carried out where Taylor-Hood elements are employed in the spatial discretization to satisfy the inf-sup condition and to prevent spurious numerical oscillations. The resulting discrete problems are solved using the FEniCS platform through consistent variational formulations, employing both monolithic and staggered approaches. We conduct benchmark tests on various hydrogel structures, demonstrating that major differences arise from the chosen volumetric response of the hydrogel. The significance of this choice is frequently underestimated in the state-of-the-art literature but has been shown to have substantial implications on the resulting hydrogel behavior.
Progress in the realm of quantum technologies is paving the way for a multitude of potential applications across different sectors. However, the reduced number of available quantum computers, their technical limitations and the high demand for their use are posing some problems for developers and researchers. Mainly, users trying to execute quantum circuits on these devices are usually facing long waiting times in the tasks queues. In this context, this work propose a technique to reduce waiting times and optimize quantum computers usage by scheduling circuits from different users into combined circuits that are executed at the same time. To validate this proposal, different widely known quantum algorithms have been selected and executed in combined circuits. The obtained results are then compared with the results of executing the same algorithms in an isolated way. This allowed us to measure the impact of the use of the scheduler. Among the obtained results, it has been possible to verify that the noise suffered by executing a combination of circuits through the proposed scheduler does not critically affect the outcomes.
We propose a monotone approximation scheme for a class of fully nonlinear PDEs called G-equations. Such equations arise often in the characterization of G-distributed random variables in a sublinear expectation space. The proposed scheme is constructed recursively based on a piecewise constant approximation of the viscosity solution to the G-equation. We establish the convergence of the scheme and determine the convergence rate with an explicit error bound, using the comparison principles for both the scheme and the equation together with a mollification procedure. The first application is obtaining the convergence rate of Peng's robust central limit theorem with an explicit bound of Berry-Esseen type. The second application is an approximation scheme with its convergence rate for the Black-Scholes-Barenblatt equation.