亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We propose a method for computing the Lyapunov exponents of renewal equations (delay equations of Volterra type) and of coupled systems of renewal and delay differential equations. The method consists in the reformulation of the delay equation as an abstract differential equation, the reduction of the latter to a system of ordinary differential equations via pseudospectral collocation, and the application of the standard discrete QR method. The effectiveness of the method is shown experimentally and a MATLAB implementation is provided.

相關內容

The problem of straggler mitigation in distributed matrix multiplication (DMM) is considered for a large number of worker nodes and a fixed small finite field. Polynomial codes and matdot codes are generalized by making use of algebraic function fields (i.e., algebraic functions over an algebraic curve) over a finite field. The construction of optimal solutions is translated to a combinatorial problem on the Weierstrass semigroups of the corresponding algebraic curves. Optimal or almost optimal solutions are provided. These have the same computational complexity per worker as classical polynomial and matdot codes, and their recovery thresholds are almost optimal in the asymptotic regime (growing number of workers and a fixed finite field).

The celebrated Kleene fixed point theorem is crucial in the mathematical modelling of recursive specifications in Denotational Semantics. In this paper we discuss whether the hypothesis of the aforementioned result can be weakened. An affirmative answer to the aforesaid inquiry is provided so that a characterization of those properties that a self-mapping must satisfy in order to guarantee that its set of fixed points is non-empty when no notion of completeness are assumed to be satisfied by the partially ordered set. Moreover, the case in which the partially ordered set is coming from a quasi-metric space is treated in depth. Finally, an application of the exposed theory is obtained. Concretely, a mathematical method to discuss the asymptotic complexity of those algorithms whose running time of computing fulfills a recurrence equation is presented. Moreover, the aforesaid method retrieves the fixed point based methods that appear in the literature for asymptotic complexity analysis of algorithms. However, our new method improves the aforesaid methods because it imposes fewer requirements than those that have been assumed in the literature and, in addition, it allows to state simultaneously upper and lower asymptotic bounds for the running time computing.

We propose a framework where Fer and Wilcox expansions for the solution of differential equations are derived from two particular choices for the initial transformation that seeds the product expansion. In this scheme intermediate expansions can also be envisaged. Recurrence formulas are developed. A new lower bound for the convergence of the Wilcox expansion is provided as well as some applications of the results. In particular, two examples are worked out up to high order of approximation to illustrate the behavior of the Wilcox expansion.

We propose a new stabilised finite element method for the classical Kolmogorov equation. The latter serves as a basic model problem for large classes of kinetic-type equations and, crucially, is characterised by degenerate diffusion. The stabilisation is constructed so that the resulting method admits a \emph{numerical hypocoercivity} property, analogous to the corresponding property of the PDE problem. More specifically, the stabilisation is constructed so that spectral gap is possible in the resulting ``stronger-than-energy'' stabilisation norm, despite the degenerate nature of the diffusion in Kolmogorov, thereby the method has a provably robust behaviour as the ``time'' variable goes to infinity. We consider both a spatially discrete version of the stabilised finite element method and a fully discrete version, with the time discretisation realised by discontinuous Galerkin timestepping. Both stability and a priori error bounds are proven in all cases. Numerical experiments verify the theoretical findings.

We consider the generalized Newton method (GNM) for the absolute value equation (AVE) $Ax-|x|=b$. The method has finite termination property whenever it is convergent, no matter whether the AVE has a unique solution. We prove that GNM is convergent whenever $\rho(|A^{-1}|)<1/3$. We also present new results for the case where $A-I$ is a nonsingular $M$-matrix or an irreducible singular $M$-matrix. When $A-I$ is an irreducible singular $M$-matrix, the AVE may have infinitely many solutions. In this case, we show that GNM always terminates with a uniquely identifiable solution, as long as the initial guess has at least one nonpositive component.

We develop a numerical method for the Westervelt equation, an important equation in nonlinear acoustics, in the form where the attenuation is represented by a class of non-local in time operators. A semi-discretisation in time based on the trapezoidal rule and A-stable convolution quadrature is stated and analysed. Existence and regularity analysis of the continuous equations informs the stability and error analysis of the semi-discrete system. The error analysis includes the consideration of the singularity at $t = 0$ which is addressed by the use of a correction in the numerical scheme. Extensive numerical experiments confirm the theory.

Sparse identification of differential equations aims to compute the analytic expressions from the observed data explicitly. However, there exist two primary challenges. Firstly, it exhibits sensitivity to the noise in the observed data, particularly for the derivatives computations. Secondly, existing literature predominantly concentrates on single-fidelity (SF) data, which imposes limitations on its applicability due to the computational cost. In this paper, we present two novel approaches to address these problems from the view of uncertainty quantification. We construct a surrogate model employing the Gaussian process regression (GPR) to mitigate the effect of noise in the observed data, quantify its uncertainty, and ultimately recover the equations accurately. Subsequently, we exploit the multi-fidelity Gaussian processes (MFGP) to address scenarios involving multi-fidelity (MF), sparse, and noisy observed data. We demonstrate the robustness and effectiveness of our methodologies through several numerical experiments.

A functional differential equation related to the logistic equation is studied by a combination of numerical and perturbation methods. Parameter regions are identified where the solution to the nonlinear problem is approximated well by known series solutions of the linear version of the equation. The solution space for a certain class of functions is then mapped out using a continuation approach.

In this paper, we formulate and analyse a geometric low-regularity integrator for solving the nonlinear Klein-Gordon equation in the $d$-dimensional space with $d=1,2,3$. The integrator is constructed based on the two-step trigonometric method and thus it has a simple form. Error estimates are rigorously presented to show that the integrator can achieve second-order time accuracy in the energy space under the regularity requirement in $H^{1+\frac{d}{4}}\times H^{\frac{d}{4}}$. Moreover, the time symmetry of the scheme ensures its good long-time energy conservation which is rigorously proved by the technique of modulated Fourier expansions. A numerical test is presented and the numerical results demonstrate the superiorities of the new integrator over some existing methods.

In this paper, we consider a numerical method for the multi-term Caputo-Fabrizio time-fractional diffusion equations (with orders $\alpha_i\in(0,1)$, $i=1,2,\cdots,n$). The proposed method employs a fast finite difference scheme to approximate multi-term fractional derivatives in time, requiring only $O(1)$ storage and $O(N_T)$ computational complexity, where $N_T$ denotes the total number of time steps. Then we use a Legendre spectral collocation method for spatial discretization. The stability and convergence of the scheme have been thoroughly discussed and rigorously established. We demonstrate that the proposed scheme is unconditionally stable and convergent with an order of $O(\left(\Delta t\right)^{2}+N^{-m})$, where $\Delta t$, $N$, and $m$ represent the timestep size, polynomial degree, and regularity in the spatial variable of the exact solution, respectively. Numerical results are presented to validate the theoretical predictions.

北京阿比特科技有限公司