We consider the generalized Newton method (GNM) for the absolute value equation (AVE) $Ax-|x|=b$. The method has finite termination property whenever it is convergent, no matter whether the AVE has a unique solution. We prove that GNM is convergent whenever $\rho(|A^{-1}|)<1/3$. We also present new results for the case where $A-I$ is a nonsingular $M$-matrix or an irreducible singular $M$-matrix. When $A-I$ is an irreducible singular $M$-matrix, the AVE may have infinitely many solutions. In this case, we show that GNM always terminates with a uniquely identifiable solution, as long as the initial guess has at least one nonpositive component.
We explore the $\textit{average-case deterministic query complexity}$ of boolean functions under the $\textit{uniform distribution}$, denoted by $\mathrm{D}_\mathrm{ave}(f)$, the minimum average depth of zero-error decision tree computing a boolean function $f$. This measure found several applications across diverse fields. We study $\mathrm{D}_\mathrm{ave}(f)$ of several common functions, including penalty shoot-out functions, symmetric functions, linear threshold functions and tribes functions. Let $\mathrm{wt}(f)$ denote the number of the inputs on which $f$ outputs $1$. We prove that $\mathrm{D}_\mathrm{ave}(f) \le \log \frac{\mathrm{wt}(f)}{\log n} + O\left(\log \log \frac{\mathrm{wt}(f)}{\log n}\right)$ when $\mathrm{wt}(f) \ge 4 \log n$ (otherwise, $\mathrm{D}_\mathrm{ave}(f) = O(1)$), and that for almost all fixed-weight functions, $\mathrm{D}_\mathrm{ave}(f) \geq \log \frac{\mathrm{wt}(f)}{\log n} - O\left( \log \log \frac{\mathrm{wt}(f)}{\log n}\right)$, which implies the tightness of the upper bound up to an additive logarithmic term. We also study $\mathrm{D}_\mathrm{ave}(f)$ of circuits. Using H\r{a}stad's switching lemma or Rossman's switching lemma [Comput. Complexity Conf. 137, 2019], one can derive upper bounds $\mathrm{D}_\mathrm{ave}(f) \leq n\left(1 - \frac{1}{O(k)}\right)$ for width-$k$ CNFs/DNFs and $\mathrm{D}_\mathrm{ave}(f) \leq n\left(1 - \frac{1}{O(\log s)}\right)$ for size-$s$ CNFs/DNFs, respectively. For any $w \ge 1.1 \log n$, we prove the existence of some width-$w$ size-$(2^w/w)$ DNF formula with $\mathrm{D}_\mathrm{ave} (f) = n \left(1 - \frac{\log n}{\Theta(w)}\right)$, providing evidence on the tightness of the switching lemmas.
We propose an efficient algorithm for matching two correlated Erd\H{o}s--R\'enyi graphs with $n$ vertices whose edges are correlated through a latent vertex correspondence. When the edge density $q= n^{- \alpha+o(1)}$ for a constant $\alpha \in [0,1)$, we show that our algorithm has polynomial running time and succeeds to recover the latent matching as long as the edge correlation is non-vanishing. This is closely related to our previous work on a polynomial-time algorithm that matches two Gaussian Wigner matrices with non-vanishing correlation, and provides the first polynomial-time random graph matching algorithm (regardless of the regime of $q$) when the edge correlation is below the square root of the Otter's constant (which is $\approx 0.338$).
We show how to find all $k$ marked elements in a list of size $N$ using the optimal number $O(\sqrt{N k})$ of quantum queries and only a polylogarithmic overhead in the gate complexity, in the setting where one has a small quantum memory. Previous algorithms either incurred a factor $k$ overhead in the gate complexity, or had an extra factor $\log(k)$ in the query complexity. We then consider the problem of finding a multiplicative $\delta$-approximation of $s = \sum_{i=1}^N v_i$ where $v=(v_i) \in [0,1]^N$, given quantum query access to a binary description of $v$. We give an algorithm that does so, with probability at least $1-\rho$, using $O(\sqrt{N \log(1/\rho) / \delta})$ quantum queries (under mild assumptions on $\rho$). This quadratically improves the dependence on $1/\delta$ and $\log(1/\rho)$ compared to a straightforward application of amplitude estimation. To obtain the improved $\log(1/\rho)$ dependence we use the first result.
In this paper, we propose an RADI-type method for large-scale stochastic continuous-time algebraic Riccati equations with sparse and low-rank structures. The so-called ISC method is developed by using the Incorporation idea together with different Shifts to accelerate the convergence and Compressions to reduce the storage and complexity. Numerical experiments are given to show its efficiency.
Deep learning methods have access to be employed for solving physical systems governed by parametric partial differential equations (PDEs) due to massive scientific data. It has been refined to operator learning that focuses on learning non-linear mapping between infinite-dimensional function spaces, offering interface from observations to solutions. However, state-of-the-art neural operators are limited to constant and uniform discretization, thereby leading to deficiency in generalization on arbitrary discretization schemes for computational domain. In this work, we propose a novel operator learning algorithm, referred to as Dynamic Gaussian Graph Operator (DGGO) that expands neural operators to learning parametric PDEs in arbitrary discrete mechanics problems. The Dynamic Gaussian Graph (DGG) kernel learns to map the observation vectors defined in general Euclidean space to metric vectors defined in high-dimensional uniform metric space. The DGG integral kernel is parameterized by Gaussian kernel weighted Riemann sum approximating and using dynamic message passing graph to depict the interrelation within the integral term. Fourier Neural Operator is selected to localize the metric vectors on spatial and frequency domains. Metric vectors are regarded as located on latent uniform domain, wherein spatial and spectral transformation offer highly regular constraints on solution space. The efficiency and robustness of DGGO are validated by applying it to solve numerical arbitrary discrete mechanics problems in comparison with mainstream neural operators. Ablation experiments are implemented to demonstrate the effectiveness of spatial transformation in the DGG kernel. The proposed method is utilized to forecast stress field of hyper-elastic material with geometrically variable void as engineering application.
We prove non-asymptotic error bounds for particle gradient descent (PGD)~(Kuntz et al., 2023), a recently introduced algorithm for maximum likelihood estimation of large latent variable models obtained by discretizing a gradient flow of the free energy. We begin by showing that, for models satisfying a condition generalizing both the log-Sobolev and the Polyak--{\L}ojasiewicz inequalities (LSI and P{\L}I, respectively), the flow converges exponentially fast to the set of minimizers of the free energy. We achieve this by extending a result well-known in the optimal transport literature (that the LSI implies the Talagrand inequality) and its counterpart in the optimization literature (that the P{\L}I implies the so-called quadratic growth condition), and applying it to our new setting. We also generalize the Bakry--\'Emery Theorem and show that the LSI/P{\L}I generalization holds for models with strongly concave log-likelihoods. For such models, we further control PGD's discretization error, obtaining non-asymptotic error bounds. While we are motivated by the study of PGD, we believe that the inequalities and results we extend may be of independent interest.
This paper develops a two-stage stochastic model to investigate evolution of random fields on the unit sphere $\bS^2$ in $\R^3$. The model is defined by a time-fractional stochastic diffusion equation on $\bS^2$ governed by a diffusion operator with the time-fractional derivative defined in the Riemann-Liouville sense. In the first stage, the model is characterized by a homogeneous problem with an isotropic Gaussian random field on $\bS^2$ as an initial condition. In the second stage, the model becomes an inhomogeneous problem driven by a time-delayed Brownian motion on $\bS^2$. The solution to the model is given in the form of an expansion in terms of complex spherical harmonics. An approximation to the solution is given by truncating the expansion of the solution at degree $L\geq1$. The rate of convergence of the truncation errors as a function of $L$ and the mean square errors as a function of time are also derived. It is shown that the convergence rates depend not only on the decay of the angular power spectrum of the driving noise and the initial condition, but also on the order of the fractional derivative. We study sample properties of the stochastic solution and show that the solution is an isotropic H\"{o}lder continuous random field. Numerical examples and simulations inspired by the cosmic microwave background (CMB) are given to illustrate the theoretical findings.
We survey recent developments in the field of complexity of pathwise approximation in $p$-th mean of the solution of a stochastic differential equation at the final time based on finitely many evaluations of the driving Brownian motion. First, we briefly review the case of equations with globally Lipschitz continuous coefficients, for which an error rate of at least $1/2$ in terms of the number of evaluations of the driving Brownian motion is always guaranteed by using the equidistant Euler-Maruyama scheme. Then we illustrate that giving up the global Lipschitz continuity of the coefficients may lead to a non-polynomial decay of the error for the Euler-Maruyama scheme or even to an arbitrary slow decay of the smallest possible error that can be achieved on the basis of finitely many evaluations of the driving Brownian motion. Finally, we turn to recent positive results for equations with a drift coefficient that is not globally Lipschitz continuous. Here we focus on scalar equations with a Lipschitz continuous diffusion coefficient and a drift coefficient that satisfies piecewise smoothness assumptions or has fractional Sobolev regularity and we present corresponding complexity results.
Sylvester matrix equations are ubiquitous in scientific computing. However, few solution techniques exist for their generalized multiterm version, as they now arise in an increasingly large number of applications. In this work, we consider algebraic parameter-free preconditioning techniques for the iterative solution of generalized multiterm Sylvester equations. They consist in constructing low Kronecker rank approximations of either the operator itself or its inverse. While the former requires solving standard Sylvester equations in each iteration, the latter only requires matrix-matrix multiplications, which are highly optimized on modern computer architectures. Moreover, low Kronecker rank approximate inverses can be easily combined with sparse approximate inverse techniques, thereby enhancing their performance with little or no damage to their effectiveness.
The noncommutative sum-of-squares (ncSoS) hierarchy was introduced by Navascu\'{e}s-Pironio-Ac\'{i}n as a sequence of semidefinite programming relaxations for approximating values of noncommutative polynomial optimization problems, which were originally intended to generalize quantum values of nonlocal games. Recent work has started to analyze the hierarchy for approximating ground energies of local Hamiltonians, initially through rounding algorithms which output product states for degree-2 ncSoS applied to Quantum Max-Cut. Some rounding methods are known which output entangled states, but they use degree-4 ncSoS. Based on this, Hwang-Neeman-Parekh-Thompson-Wright conjectured that degree-2 ncSoS cannot beat product state approximations for Quantum Max-Cut and gave a partial proof relying on a conjectural generalization of Borrell's inequality. In this work we consider a family of Hamiltonians (called the quantum rotor model in condensed matter literature or lattice $O(k)$ vector model in quantum field theory) with infinite-dimensional local Hilbert space $L^{2}(S^{k - 1})$, and show that a degree-2 ncSoS relaxation approximates the ground state energy better than any product state.