Data security and sharing remains nuisance among many applications like business data, medical data, banking data etc. In this research, block chain technology is built with encryption algorithm for high level data security in cloud storage. Medical data security seems critical aspect due to sensitivity of patient information. Unauthorized access of medical data creates major issue to patients. This article proposed block chain with hybrid encryption technique for securing medical data stored in block chain model at cloud storage. New Two fish encryption model is implemented based on RSA Multiple Precision Arithmetic. MPA works by using library concept. The objective of using this methodology is to enhance security performance with less execution time. Patient data is processed by encryption algorithm and stored at blockchain infrastructure using encrypted key. Access permission allows user to read or write the medical data attached in block chain framework. The performance of traditional cryptographic techniques is very less in providing security infrastructure.
Collaborative manipulation task often requires negotiation using explicit or implicit communication. An important example is determining where to move when the goal destination is not uniquely specified, and who should lead the motion. This work is motivated by the ability of humans to communicate the desired destination of motion through back-and-forth force exchanges. Inherent to these exchanges is also the ability to dynamically assign a role to each participant, either taking the initiative or deferring to the partner's lead. In this paper, we propose a hierarchical robot control framework that emulates human behavior in communicating a motion destination to a human collaborator and in responding to their actions. At the top level, the controller consists of a set of finite-state machines corresponding to different levels of commitment of the robot to its desired goal configuration. The control architecture is loosely based on the human strategy observed in the human-human experiments, and the key component is a real-time intent recognizer that helps the robot respond to human actions. We describe the details of the control framework, and feature engineering and training process of the intent recognition. The proposed controller was implemented on a UR10e robot (Universal Robots) and evaluated through human studies. The experiments show that the robot correctly recognizes and responds to human input, communicates its intent clearly, and resolves conflict. We report success rates and draw comparisons with human-human experiments to demonstrate the effectiveness of the approach.
While there now exists a large literature on policy evaluation and learning, much of prior work assumes that the treatment assignment of one unit does not affect the outcome of another unit. Unfortunately, ignoring interference may lead to biased policy evaluation and yield ineffective learned policies. For example, treating influential individuals who have many friends can generate positive spillover effects, thereby improving the overall performance of an individualized treatment rule (ITR). We consider the problem of evaluating and learning an optimal ITR under clustered network (or partial) interference where clusters of units are sampled from a population and units may influence one another within each cluster. Under this model, we propose an estimator that can be used to evaluate the empirical performance of an ITR. We show that this estimator is substantially more efficient than the standard inverse probability weighting estimator, which does not impose any assumption about spillover effects. We derive the finite-sample regret bound for a learned ITR, showing that the use of our efficient evaluation estimator leads to the improved performance of learned policies. Finally, we conduct simulation and empirical studies to illustrate the advantages of the proposed methodology.
Although autonomous functioning facilitates deployment of robotic systems in domains that admit limited human oversight on our planet and beyond, finding correspondence between task requirements and autonomous capability is still an open challenge. Consequently, a number of methods for quantifying autonomy have been proposed over the last three decades, but to our knowledge all these have no discernment of sub-mode features of variation of autonomy and some are based on metrics that violet the Goodhart's law. This paper focuses on the full autonomous mode and proposes a task-requirements based autonomy assessment framework. The framework starts by establishing robot task characteristics from which three autonomy metrics, namely requisite capability, reliability and responsiveness, and functions for determining autonomy as a two-part measure, namely of level of autonomy and degree of autonomy are derived. These characteristics are founded on the realization that robots ultimately replace human skilled workers, to find a mapping between human job and robot task characteristics. The distinction between level and degree of autonomy stemmed from the acknowledgment that autonomy is not just a question of existence, but also one of performance of requisite capability. When continuously monitored, the proposed metrics provide a means of monitoring the integrity of a system. The framework has been demonstrated on two case studies, namely autonomous vehicle at an on-road dynamic driving task and the DARPA subT challenge rules analysis. The framework provides not only a tool for quantifying autonomy, but also a regulatory interface and common language for autonomous systems developers and users.
Self-driving software pipelines include components that are learned from a significant number of training examples, yet it remains challenging to evaluate the overall system's safety and generalization performance. Together with scaling up the real-world deployment of autonomous vehicles, it is of critical importance to automatically find simulation scenarios where the driving policies will fail. We propose a method that efficiently generates adversarial simulation scenarios for autonomous driving by solving an optimal control problem that aims to maximally perturb the policy from its nominal trajectory. Given an image-based driving policy, we show that we can inject new objects in a neural rendering representation of the deployment scene, and optimize their texture in order to generate adversarial sensor inputs to the policy. We demonstrate that adversarial scenarios discovered purely in the neural renderer (surrogate scene) can often be successfully transferred to the deployment scene, without further optimization. We demonstrate this transfer occurs both in simulated and real environments, provided the learned surrogate scene is sufficiently close to the deployment scene.
Although link prediction on graphs has achieved great success with the development of graph neural networks (GNNs), the potential robustness under the edge noise is still less investigated. To close this gap, we first conduct an empirical study to disclose that the edge noise bilaterally perturbs both input topology and target label, yielding severe performance degradation and representation collapse. To address this dilemma, we propose an information-theory-guided principle, Robust Graph Information Bottleneck (RGIB), to extract reliable supervision signals and avoid representation collapse. Different from the basic information bottleneck, RGIB further decouples and balances the mutual dependence among graph topology, target labels, and representation, building new learning objectives for robust representation against the bilateral noise. Two instantiations, RGIB-SSL and RGIB-REP, are explored to leverage the merits of different methodologies, i.e., self-supervised learning and data reparameterization, for implicit and explicit data denoising, respectively. Extensive experiments on six datasets and three GNNs with diverse noisy scenarios verify the effectiveness of our RGIB instantiations. The code is publicly available at: //github.com/tmlr-group/RGIB.
The emergence of pandemics has significantly emphasized the need for effective solutions in healthcare data analysis. One particular challenge in this domain is the manual examination of medical images, such as X-rays and CT scans. This process is time-consuming and involves the logistical complexities of transferring these images to centralized cloud computing servers. Additionally, the speed and accuracy of image analysis are vital for efficient healthcare image management. This research paper introduces an innovative healthcare architecture that tackles the challenges of analysis efficiency and accuracy by harnessing the capabilities of Artificial Intelligence (AI). Specifically, the proposed architecture utilizes fog computing and presents a modified Convolutional Neural Network (CNN) designed specifically for image analysis. Different architectures of CNN layers are thoroughly explored and evaluated to optimize overall performance. To demonstrate the effectiveness of the proposed approach, a dataset of X-ray images is utilized for analysis and evaluation. Comparative assessments are conducted against recent models such as VGG16, VGG19, MobileNet, and related research papers. Notably, the proposed approach achieves an exceptional accuracy rate of 99.88% in classifying normal cases, accompanied by a validation rate of 96.5%, precision and recall rates of 100%, and an F1 score of 100%. These results highlight the immense potential of fog computing and modified CNNs in revolutionizing healthcare image analysis and diagnosis, not only during pandemics but also in the future. By leveraging these technologies, healthcare professionals can enhance the efficiency and accuracy of medical image analysis, leading to improved patient care and outcomes.
Effectively leveraging multimodal data such as various images, laboratory tests and clinical information is gaining traction in a variety of AI-based medical diagnosis and prognosis tasks. Most existing multi-modal techniques only focus on enhancing their performance by leveraging the differences or shared features from various modalities and fusing feature across different modalities. These approaches are generally not optimal for clinical settings, which pose the additional challenges of limited training data, as well as being rife with redundant data or noisy modality channels, leading to subpar performance. To address this gap, we study the robustness of existing methods to data redundancy and noise and propose a generalized dynamic multimodal information bottleneck framework for attaining a robust fused feature representation. Specifically, our information bottleneck module serves to filter out the task-irrelevant information and noises in the fused feature, and we further introduce a sufficiency loss to prevent dropping of task-relevant information, thus explicitly preserving the sufficiency of prediction information in the distilled feature. We validate our model on an in-house and a public COVID19 dataset for mortality prediction as well as two public biomedical datasets for diagnostic tasks. Extensive experiments show that our method surpasses the state-of-the-art and is significantly more robust, being the only method to remain performance when large-scale noisy channels exist. Our code is publicly available at //github.com/BII-wushuang/DMIB.
There are now over 20 commercial vector database management systems (VDBMSs), all produced within the past five years. But embedding-based retrieval has been studied for over ten years, and similarity search a staggering half century and more. Driving this shift from algorithms to systems are new data intensive applications, notably large language models, that demand vast stores of unstructured data coupled with reliable, secure, fast, and scalable query processing capability. A variety of new data management techniques now exist for addressing these needs, however there is no comprehensive survey to thoroughly review these techniques and systems. We start by identifying five main obstacles to vector data management, namely vagueness of semantic similarity, large size of vectors, high cost of similarity comparison, lack of natural partitioning that can be used for indexing, and difficulty of efficiently answering hybrid queries that require both attributes and vectors. Overcoming these obstacles has led to new approaches to query processing, storage and indexing, and query optimization and execution. For query processing, a variety of similarity scores and query types are now well understood; for storage and indexing, techniques include vector compression, namely quantization, and partitioning based on randomization, learning partitioning, and navigable partitioning; for query optimization and execution, we describe new operators for hybrid queries, as well as techniques for plan enumeration, plan selection, and hardware accelerated execution. These techniques lead to a variety of VDBMSs across a spectrum of design and runtime characteristics, including native systems specialized for vectors and extended systems that incorporate vector capabilities into existing systems. We then discuss benchmarks, and finally we outline research challenges and point the direction for future work.
Vast amount of data generated from networks of sensors, wearables, and the Internet of Things (IoT) devices underscores the need for advanced modeling techniques that leverage the spatio-temporal structure of decentralized data due to the need for edge computation and licensing (data access) issues. While federated learning (FL) has emerged as a framework for model training without requiring direct data sharing and exchange, effectively modeling the complex spatio-temporal dependencies to improve forecasting capabilities still remains an open problem. On the other hand, state-of-the-art spatio-temporal forecasting models assume unfettered access to the data, neglecting constraints on data sharing. To bridge this gap, we propose a federated spatio-temporal model -- Cross-Node Federated Graph Neural Network (CNFGNN) -- which explicitly encodes the underlying graph structure using graph neural network (GNN)-based architecture under the constraint of cross-node federated learning, which requires that data in a network of nodes is generated locally on each node and remains decentralized. CNFGNN operates by disentangling the temporal dynamics modeling on devices and spatial dynamics on the server, utilizing alternating optimization to reduce the communication cost, facilitating computations on the edge devices. Experiments on the traffic flow forecasting task show that CNFGNN achieves the best forecasting performance in both transductive and inductive learning settings with no extra computation cost on edge devices, while incurring modest communication cost.
It has been shown that deep neural networks are prone to overfitting on biased training data. Towards addressing this issue, meta-learning employs a meta model for correcting the training bias. Despite the promising performances, super slow training is currently the bottleneck in the meta learning approaches. In this paper, we introduce a novel Faster Meta Update Strategy (FaMUS) to replace the most expensive step in the meta gradient computation with a faster layer-wise approximation. We empirically find that FaMUS yields not only a reasonably accurate but also a low-variance approximation of the meta gradient. We conduct extensive experiments to verify the proposed method on two tasks. We show our method is able to save two-thirds of the training time while still maintaining the comparable or achieving even better generalization performance. In particular, our method achieves the state-of-the-art performance on both synthetic and realistic noisy labels, and obtains promising performance on long-tailed recognition on standard benchmarks.