亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This research article analyses and demonstrates the hidden implications for fairness of seemingly neutral data coupled with powerful technology, such as machine learning (ML), using Open Banking as an example. Open Banking has ignited a revolution in financial services, opening new opportunities for customer acquisition, management, retention, and risk assessment. However, the granularity of transaction data holds potential for harm where unnoticed proxies for sensitive and prohibited characteristics may lead to indirect discrimination. Against this backdrop, we investigate the dimensions of financial vulnerability (FV), a global concern resulting from COVID-19 and rising inflation. Specifically, we look to understand the behavioral elements leading up to FV and its impact on at-risk, disadvantaged groups through the lens of fair interpretation. Using a unique dataset from a UK FinTech lender, we demonstrate the power of fine-grained transaction data while simultaneously cautioning its safe usage. Three ML classifiers are compared in predicting the likelihood of FV, and groups exhibiting different magnitudes and forms of FV are identified via clustering to highlight the effects of feature combination. Our results indicate that engineered features of financial behavior can be predictive of omitted personal information, particularly sensitive or protected characteristics, shedding light on the hidden dangers of Open Banking data. We discuss the implications and conclude fairness via unawareness is ineffective in this new technological environment.

相關內容

The 2022 Russian invasion of Ukraine has seen an intensification in the use of social media by governmental actors in cyber warfare. Wartime communication via memes has been a successful strategy used not only by independent accounts such as @uamemesforces, but also-for the first time in a full-scale interstate war-by official Ukrainian government accounts such as @Ukraine and @DefenceU. We study this prominent example of memetic warfare through the lens of its narratives, and find them to be a key component of success: tweets with a 'victim' narrative garner twice as many retweets. However, malevolent narratives focusing on the enemy resonate more than those about heroism or victims with countries providing more assistance to Ukraine. Our findings present a nuanced examination of Ukraine's influence operations and of the worldwide response to it, thus contributing new insights into the evolution of socio-technical systems in times of war.

Prior research on transparency in content moderation has demonstrated the benefits of offering post-removal explanations to sanctioned users. In this paper, we examine whether the influence of such explanations transcends those who are moderated to the bystanders who witness such explanations. We conduct a quasi-experimental study on two popular Reddit communities (r/askreddit and r/science) by collecting their data spanning 13 months-a total of 85.5M posts made by 5.9M users. Our causal-inference analyses show that bystanders significantly increase their posting activity and interactivity levels as compared to their matched control set of users. Our findings suggest that explanations clarify and reinforce the social norms of online spaces, enhance community engagement, and benefit many more members than previously understood. We discuss the theoretical implications and design recommendations of this research, focusing on how investing more efforts in post-removal explanations can help build thriving online communities.

In neural network training, RMSProp and ADAM remain widely favoured optimization algorithms. One of the keys to their performance lies in selecting the correct step size, which can significantly influence their effectiveness. It is worth noting that these algorithms performance can vary considerably, depending on the chosen step sizes. Additionally, questions about their theoretical convergence properties continue to be a subject of interest. In this paper, we theoretically analyze a constant stepsize version of ADAM in the non-convex setting. We show sufficient conditions for the stepsize to achieve almost sure asymptotic convergence of the gradients to zero with minimal assumptions. We also provide runtime bounds for deterministic ADAM to reach approximate criticality when working with smooth, non-convex functions.

Due to the imbalanced nature of networked observational data, the causal effect predictions for some individuals can severely violate the positivity/overlap assumption, rendering unreliable estimations. Nevertheless, this potential risk of individual-level treatment effect estimation on networked data has been largely under-explored. To create a more trustworthy causal effect estimator, we propose the uncertainty-aware graph deep kernel learning (GraphDKL) framework with Lipschitz constraint to model the prediction uncertainty with Gaussian process and identify unreliable estimations. To the best of our knowledge, GraphDKL is the first framework to tackle the violation of positivity assumption when performing causal effect estimation with graphs. With extensive experiments, we demonstrate the superiority of our proposed method in uncertainty-aware causal effect estimation on networked data.

The need for improved network situational awareness has been highlighted by the growing complexity and severity of cyber-attacks. Mobile phones pose a significant risk to network situational awareness due to their dynamic behaviour and lack of visibility on a network. Machine learning techniques enhance situational awareness by providing administrators insight into the devices and activities which form their network. Developing machine learning techniques for situational awareness requires a testbed to generate and label network traffic. Current testbeds, however, are unable to automate the generation and labelling of realistic network traffic. To address this, we describe a testbed which automates applications on mobile devices to generate and label realistic traffic. From this testbed, two labelled datasets of network traffic have been created. We provide an analysis of the testbed automation reliability and benchmark the datasets for the task of application classification.

The manifestation and effect of bias in news reporting have been central topics in the social sciences for decades, and have received increasing attention in the NLP community recently. While NLP can help to scale up analyses or contribute automatic procedures to investigate the impact of biased news in society, we argue that methodologies that are currently dominant fall short of addressing the complex questions and effects addressed in theoretical media studies. In this survey paper, we review social science approaches and draw a comparison with typical task formulations, methods, and evaluation metrics used in the analysis of media bias in NLP. We discuss open questions and suggest possible directions to close identified gaps between theory and predictive models, and their evaluation. These include model transparency, considering document-external information, and cross-document reasoning rather than single-label assignment.

We introduce a new debiasing framework for high-dimensional linear regression that bypasses the restrictions on covariate distributions imposed by modern debiasing technology. We study the prevalent setting where the number of features and samples are both large and comparable. In this context, state-of-the-art debiasing technology uses a degrees-of-freedom correction to remove shrinkage bias of regularized estimators and conduct inference. However, this method requires that the observed samples are i.i.d., the covariates follow a mean zero Gaussian distribution, and reliable covariance matrix estimates for observed features are available. This approach struggles when (i) covariates are non-Gaussian with heavy tails or asymmetric distributions, (ii) rows of the design exhibit heterogeneity or dependencies, and (iii) reliable feature covariance estimates are lacking. To address these, we develop a new strategy where the debiasing correction is a rescaled gradient descent step (suitably initialized) with step size determined by the spectrum of the sample covariance matrix. Unlike prior work, we assume that eigenvectors of this matrix are uniform draws from the orthogonal group. We show this assumption remains valid in diverse situations where traditional debiasing fails, including designs with complex row-column dependencies, heavy tails, asymmetric properties, and latent low-rank structures. We establish asymptotic normality of our proposed estimator (centered and scaled) under various convergence notions. Moreover, we develop a consistent estimator for its asymptotic variance. Lastly, we introduce a debiased Principal Component Regression (PCR) technique using our Spectrum-Aware approach. In varied simulations and real data experiments, we observe that our method outperforms degrees-of-freedom debiasing by a margin.

Artificial General Intelligence (AGI), possessing the capacity to comprehend, learn, and execute tasks with human cognitive abilities, engenders significant anticipation and intrigue across scientific, commercial, and societal arenas. This fascination extends particularly to the Internet of Things (IoT), a landscape characterized by the interconnection of countless devices, sensors, and systems, collectively gathering and sharing data to enable intelligent decision-making and automation. This research embarks on an exploration of the opportunities and challenges towards achieving AGI in the context of the IoT. Specifically, it starts by outlining the fundamental principles of IoT and the critical role of Artificial Intelligence (AI) in IoT systems. Subsequently, it delves into AGI fundamentals, culminating in the formulation of a conceptual framework for AGI's seamless integration within IoT. The application spectrum for AGI-infused IoT is broad, encompassing domains ranging from smart grids, residential environments, manufacturing, and transportation to environmental monitoring, agriculture, healthcare, and education. However, adapting AGI to resource-constrained IoT settings necessitates dedicated research efforts. Furthermore, the paper addresses constraints imposed by limited computing resources, intricacies associated with large-scale IoT communication, as well as the critical concerns pertaining to security and privacy.

This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.

Small data challenges have emerged in many learning problems, since the success of deep neural networks often relies on the availability of a huge amount of labeled data that is expensive to collect. To address it, many efforts have been made on training complex models with small data in an unsupervised and semi-supervised fashion. In this paper, we will review the recent progresses on these two major categories of methods. A wide spectrum of small data models will be categorized in a big picture, where we will show how they interplay with each other to motivate explorations of new ideas. We will review the criteria of learning the transformation equivariant, disentangled, self-supervised and semi-supervised representations, which underpin the foundations of recent developments. Many instantiations of unsupervised and semi-supervised generative models have been developed on the basis of these criteria, greatly expanding the territory of existing autoencoders, generative adversarial nets (GANs) and other deep networks by exploring the distribution of unlabeled data for more powerful representations. While we focus on the unsupervised and semi-supervised methods, we will also provide a broader review of other emerging topics, from unsupervised and semi-supervised domain adaptation to the fundamental roles of transformation equivariance and invariance in training a wide spectrum of deep networks. It is impossible for us to write an exclusive encyclopedia to include all related works. Instead, we aim at exploring the main ideas, principles and methods in this area to reveal where we are heading on the journey towards addressing the small data challenges in this big data era.

北京阿比特科技有限公司