This paper aims for a new generation task: non-stationary multi-texture synthesis, which unifies synthesizing multiple non-stationary textures in a single model. Most non-stationary textures have large scale variance and can hardly be synthesized through one model. To combat this, we propose a multi-scale generator to capture structural patterns of various scales and effectively synthesize textures with a minor cost. However, it is still hard to handle textures of different categories with different texture patterns. Therefore, we present a category-specific training strategy to focus on learning texture pattern of a specific domain. Interestingly, once trained, our model is able to produce multi-pattern generations with dynamic variations without the need to finetune the model for different styles. Moreover, an objective evaluation metric is designed for evaluating the quality of texture expansion and global structure consistency. To our knowledge, ours is the first scheme for this challenging task, including model, training, and evaluation. Experimental results demonstrate the proposed method achieves superior performance and time efficiency. The code will be available after the publication.
Self-supervised representation learning on text-attributed graphs, which aims to create expressive and generalizable representations for various downstream tasks, has received increasing research attention lately. However, existing methods either struggle to capture the full extent of structural context information or rely on task-specific training labels, which largely hampers their effectiveness and generalizability in practice. To solve the problem of self-supervised representation learning on text-attributed graphs, we develop a novel Graph-Centric Language model -- GRENADE. Specifically, GRENADE exploits the synergistic effect of both pre-trained language model and graph neural network by optimizing with two specialized self-supervised learning algorithms: graph-centric contrastive learning and graph-centric knowledge alignment. The proposed graph-centric self-supervised learning algorithms effectively help GRENADE to capture informative textual semantics as well as structural context information on text-attributed graphs. Through extensive experiments, GRENADE shows its superiority over state-of-the-art methods. Implementation is available at \url{//github.com/bigheiniu/GRENADE}.
We introduce a novel data generation method for contradiction detection, which leverages the generative power of large language models as well as linguistic rules. Our vision is to provide a condensed corpus of prototypical contradictions, allowing for in-depth linguistic analysis as well as efficient language model fine-tuning. To this end, we instruct the generative models to create contradicting statements with respect to descriptions of specific contradiction types. In addition, the model is also instructed to come up with completely new contradiction typologies. As an auxiliary approach, we use linguistic rules to construct simple contradictions such as those arising from negation, antonymy and numeric mismatch. We find that our methods yield promising results in terms of coherence and variety of the data. Further studies, as well as manual refinement are necessary to make use of this data in a machine learning setup.
This paper shows a novel machine learning model for realized volatility (RV) prediction using a normalizing flow, an invertible neural network. Since RV is known to be skewed and have a fat tail, previous methods transform RV into values that follow a latent distribution with an explicit shape and then apply a prediction model. However, knowing that shape is non-trivial, and the transformation result influences the prediction model. This paper proposes to jointly train the transformation and the prediction model. The training process follows a maximum-likelihood objective function that is derived from the assumption that the prediction residuals on the transformed RV time series are homogeneously Gaussian. The objective function is further approximated using an expectation-maximum algorithm. On a dataset of 100 stocks, our method significantly outperforms other methods using analytical or naive neural-network transformations.
This paper proposes a new method for differentiating through optimal trajectories arising from non-convex, constrained discrete-time optimal control (COC) problems using the implicit function theorem (IFT). Previous works solve a differential Karush-Kuhn-Tucker (KKT) system for the trajectory derivative, and achieve this efficiently by solving an auxiliary Linear Quadratic Regulator (LQR) problem. In contrast, we directly evaluate the matrix equations which arise from applying variable elimination on the Lagrange multiplier terms in the (differential) KKT system. By appropriately accounting for the structure of the terms within the resulting equations, we show that the trajectory derivatives scale linearly with the number of timesteps. Furthermore, our approach allows for easy parallelization, significantly improved scalability with model size, direct computation of vector-Jacobian products and improved numerical stability compared to prior works. As an additional contribution, we unify prior works, addressing claims that computing trajectory derivatives using IFT scales quadratically with the number of timesteps. We evaluate our method on a both synthetic benchmark and four challenging, learning from demonstration benchmarks including a 6-DoF maneuvering quadrotor and 6-DoF rocket powered landing.
This letter proposes a scheme assisted by a reconfigurable intelligent surface (RIS) for efficient uplink traffic multiplexing between enhanced mobile broadband (eMBB) and ultra-reliable-low-latency communication (URLLC). The scheme determines two RIS configurations based only on the eMBB channel state information (CSI) available at the base station (BS). The first optimizes eMBB quality of service, while the second reduces eMBB interference in URLLC traffic by temporarily silencing the eMBB traffic. Numerical results demonstrate that this approach, relying solely on eMBB CSI and without BS coordination, can outperform the state-of-the-art preemptive puncturing by 4.9 times in terms of URLLC outage probability.
This paper studies the utility of techniques within uncertainty quantification, namely spectral projection and polynomial chaos expansion, in reducing sampling needs for characterizing acoustic metamaterial dispersion band responses given stochastic material properties and geometric defects. A novel method of encoding geometric defects in an interpretable, resolution independent is showcased in the formation of input space probability distributions. Orders of magnitude sampling reductions down to $\sim10^0$ and $\sim10^1$ are achieved in the 1D and 7D input space scenarios respectively while maintaining accurate output space probability distributions through combining Monte Carlo, quadrature rule, and sparse grid sampling with surrogate model fitting.
In this paper, a new method is given for counting cycles in the Tanner graph of a (Type-I) quasi-cyclic (QC) low-density parity-check (LDPC) code which the complexity mainly is dependent on the base matrix, independent from the CPM-size of the constructed code. Interestingly, for large CPM-sizes, in comparison of the existing methods, this algorithm is the first approach which efficiently counts the cycles in the Tanner graphs of QC-LDPC codes. In fact, the algorithm recursively counts the cycles in the parity-check matrix column-by-column by finding all non-isomorph tailless backtrackless closed (TBC) walks in the base graph and enumerating theoretically their corresponding cycles in the same equivalent class. Moreover, this approach can be modified in few steps to find the cycle distributions of a class of LDPC codes based on Affine permutation matrices (APM-LDPC codes). Interestingly, unlike the existing methods which count the cycles up to $2g-2$, where $g$ is the girth, the proposed algorithm can be used to enumerate the cycles of arbitrary length in the Tanner graph. Moreover, the proposed cycle searching algorithm improves upon various previously known methods, in terms of computational complexity and memory requirements.
Named entity recognition (NER) is the task to identify text spans that mention named entities, and to classify them into predefined categories such as person, location, organization etc. NER serves as the basis for a variety of natural language applications such as question answering, text summarization, and machine translation. Although early NER systems are successful in producing decent recognition accuracy, they often require much human effort in carefully designing rules or features. In recent years, deep learning, empowered by continuous real-valued vector representations and semantic composition through nonlinear processing, has been employed in NER systems, yielding stat-of-the-art performance. In this paper, we provide a comprehensive review on existing deep learning techniques for NER. We first introduce NER resources, including tagged NER corpora and off-the-shelf NER tools. Then, we systematically categorize existing works based on a taxonomy along three axes: distributed representations for input, context encoder, and tag decoder. Next, we survey the most representative methods for recent applied techniques of deep learning in new NER problem settings and applications. Finally, we present readers with the challenges faced by NER systems and outline future directions in this area.
We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.
In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.