With the goal of enabling ultrareliable and low-latency wireless communications for industrial internet of things (IIoT), this paper studies the use of energy-based modulations in noncoherent massive single-input multiple-output (SIMO) systems. We consider a one-shot communication over a channel with correlated Rayleigh fading and colored Gaussian noise, in which the receiver has statistical channel state information (CSI). We first provide a theoretical analysis on the limitations of unipolar pulse-amplitude modulation (PAM) in systems of this kind, based on maximum likelihood detection. The existence of a fundamental error floor at high signal-to-noise ratio (SNR) regimes is proved for constellations with more than two energy levels, when no (statistical) CSI is available at the transmitter. In the main body of the paper, we present a design framework for quadratic detectors that generalizes the widely-used energy detector, to better exploit the statistical knowledge of the channel. This allows us to design receivers optimized according to information-theoretic criteria that exhibit lower error rates at moderate and high SNR. We subsequently derive an analytic approximation for the error probability of a general class of quadratic detectors in the large array regime. Finally, we numerically validate it and discuss the outage probability of the system.
This study explores implementing a digital twin network (DTN) for efficient 6G wireless network management, aligning with the fault, configuration, accounting, performance, and security (FCAPS) model. The DTN architecture comprises the Physical Twin Layer, implemented using NS-3, and the Service Layer, featuring machine learning and reinforcement learning for optimizing carrier sensitivity threshold and transmit power control in wireless networks. We introduce a robust "What-if Analysis" module, utilizing conditional tabular generative adversarial network (CTGAN) for synthetic data generation to mimic various network scenarios. These scenarios assess four network performance metrics: throughput, latency, packet loss, and coverage. Our findings demonstrate the efficiency of the proposed what-if analysis framework in managing complex network conditions, highlighting the importance of the scenario-maker step and the impact of twinning intervals on network performance.
In recent years, the complexity of 5G and beyond wireless networks has escalated, prompting a need for innovative frameworks to facilitate flexible management and efficient deployment. The concept of digital twins (DTs) has emerged as a solution to enable real-time monitoring, predictive configurations, and decision-making processes. While existing works primarily focus on leveraging DTs to optimize wireless networks, a detailed mapping methodology for creating virtual representations of network infrastructure and properties is still lacking. In this context, we introduce VH-Twin, a novel time-series data-driven framework that effectively maps wireless networks into digital reality. VH-Twin distinguishes itself through complementary vertical twinning (V-twinning) and horizontal twinning (H-twinning) stages, followed by a periodic clustering mechanism used to virtualize network regions based on their distinct geological and wireless characteristics. Specifically, V-twinning exploits distributed learning techniques to initialize a global twin model collaboratively from virtualized network clusters. H-twinning, on the other hand, is implemented with an asynchronous mapping scheme that dynamically updates twin models in response to network or environmental changes. Leveraging real-world wireless traffic data within a cellular wireless network, comprehensive experiments are conducted to verify that VH-Twin can effectively construct, deploy, and maintain network DTs. Parametric analysis also offers insights into how to strike a balance between twinning efficiency and model accuracy at scale.
In practical communication systems, knowledge of channel models is often absent, and consequently, transceivers need be designed based on empirical data. In this work, we study data-driven approaches to reliably choosing decoding metrics and code rates that facilitate reliable communication over unknown discrete memoryless channels (DMCs). Our analysis is inspired by the PAC (probably approximately correct) learning theory and does not rely on any assumptions on the statistical characteristics of DMCs. We show that a naive plug-in algorithm for choosing decoding metrics is likely to fail for finite training sets. We propose an alternative algorithm called the virtual sample algorithm and establish a non-asymptotic lower bound on its performance. The virtual sample algorithm is then used as a building block for constructing a learning algorithm that chooses a decoding metric and a code rate using which a transmitter and a receiver can reliably communicate at a rate arbitrarily close to the channel mutual information. Therefore, we conclude that DMCs are PAC learnable.
Safe control of neural network dynamic models (NNDMs) is important to robotics and many applications. However, it remains challenging to compute an optimal safe control in real time for NNDM. To enable real-time computation, we propose to use a sound approximation of the NNDM in the control synthesis. In particular, we propose Bernstein over-approximated neural dynamics (BOND) based on the Bernstein polynomial over-approximation (BPO) of ReLU activation functions in NNDM. To mitigate the errors introduced by the approximation and to ensure persistent feasibility of the safe control problems, we synthesize a worst-case safety index using the most unsafe approximated state within the BPO relaxation of NNDM offline. For the online real-time optimization, we formulate the first-order Taylor approximation of the nonlinear worst-case safety constraint as an additional linear layer of NNDM with the l2 bounded bias term for the higher-order remainder. Comprehensive experiments with different neural dynamics and safety constraints show that with safety guaranteed, our NNDMs with sound approximation are 10-100 times faster than the safe control baseline that uses mixed integer programming (MIP), validating the effectiveness of the worst-case safety index and scalability of the proposed BOND in real-time large-scale settings.
Privacy in Location-Based Services (LBS) has become a paramount concern with the ubiquity of mobile devices and the increasing integration of location data into various applications. In this paper, we present several novel contributions aimed at advancing the understanding and management of privacy leakage in LBS. Our contributions provides a more comprehensive framework for analyzing privacy concerns across different facets of location-based interactions. Specifically, we introduce $(\epsilon, \delta)$-location privacy, $(\epsilon, \delta, \theta)$-trajectory privacy, and $(\epsilon, \delta, \theta)$-POI privacy, which offer refined mechanisms for quantifying privacy risks associated with location, trajectory, and points of interest when continuously interacting with LBS. Furthermore, we establish fundamental connections between these privacy notions, facilitating a holistic approach to privacy preservation in LBS. Additionally, we present a lower bound analysis to evaluate the utility of the proposed privacy-preserving mechanisms, offering insights into the trade-offs between privacy protection and data utility. Finally, we instantiate our framework with the Plannar Isotopic Mechanism to demonstrate its practical applicability while ensuring optimal utility and quantifying privacy leakages across various dimensions. The conducted evaluations provide a comprehensive insight into the efficacy of our framework in capturing privacy loss on location, trajectory, and Points of Interest (POI) while facilitating quantification of the ensured accuracy.
Due to the increasing security standards of modern smartphones, forensic data acquisition from such devices is a growing challenge. One rather generic way to access data on smartphones in practice is to use the local backup mechanism offered by the mobile operating systems. We study the suitability of such mechanisms for forensic data acquisition by performing a thorough evaluation of iOS's and Android's local backup mechanisms on two mobile devices. Based on a systematic and generic evaluation procedure comparing the contents of local backup to the original storage, we show that in our exemplary practical evaluations, in most cases (but not all) local backup actually yields a correct copy of the original data from storage. Our study also highlights corner cases, such as database files with pending changes, that need to be considered when assessing the integrity and authenticity of evidence acquired through local backup.
We propose Pointer-Augmented Neural Memory (PANM) to help neural networks understand and apply symbol processing to new, longer sequences of data. PANM integrates an external neural memory that uses novel physical addresses and pointer manipulation techniques to mimic human and computer symbol processing abilities. PANM facilitates pointer assignment, dereference, and arithmetic by explicitly using physical pointers to access memory content. Remarkably, it can learn to perform these operations through end-to-end training on sequence data, powering various sequential models. Our experiments demonstrate PANM's exceptional length extrapolating capabilities and improved performance in tasks that require symbol processing, such as algorithmic reasoning and Dyck language recognition. PANM helps Transformer achieve up to 100% generalization accuracy in compositional learning tasks and significantly better results in mathematical reasoning, question answering and machine translation tasks.
One principal approach for illuminating a black-box neural network is feature attribution, i.e. identifying the importance of input features for the network's prediction. The predictive information of features is recently proposed as a proxy for the measure of their importance. So far, the predictive information is only identified for latent features by placing an information bottleneck within the network. We propose a method to identify features with predictive information in the input domain. The method results in fine-grained identification of input features' information and is agnostic to network architecture. The core idea of our method is leveraging a bottleneck on the input that only lets input features associated with predictive latent features pass through. We compare our method with several feature attribution methods using mainstream feature attribution evaluation experiments. The code is publicly available.
We describe ACE0, a lightweight platform for evaluating the suitability and viability of AI methods for behaviour discovery in multiagent simulations. Specifically, ACE0 was designed to explore AI methods for multi-agent simulations used in operations research studies related to new technologies such as autonomous aircraft. Simulation environments used in production are often high-fidelity, complex, require significant domain knowledge and as a result have high R&D costs. Minimal and lightweight simulation environments can help researchers and engineers evaluate the viability of new AI technologies for behaviour discovery in a more agile and potentially cost effective manner. In this paper we describe the motivation for the development of ACE0.We provide a technical overview of the system architecture, describe a case study of behaviour discovery in the aerospace domain, and provide a qualitative evaluation of the system. The evaluation includes a brief description of collaborative research projects with academic partners, exploring different AI behaviour discovery methods.
Vast amount of data generated from networks of sensors, wearables, and the Internet of Things (IoT) devices underscores the need for advanced modeling techniques that leverage the spatio-temporal structure of decentralized data due to the need for edge computation and licensing (data access) issues. While federated learning (FL) has emerged as a framework for model training without requiring direct data sharing and exchange, effectively modeling the complex spatio-temporal dependencies to improve forecasting capabilities still remains an open problem. On the other hand, state-of-the-art spatio-temporal forecasting models assume unfettered access to the data, neglecting constraints on data sharing. To bridge this gap, we propose a federated spatio-temporal model -- Cross-Node Federated Graph Neural Network (CNFGNN) -- which explicitly encodes the underlying graph structure using graph neural network (GNN)-based architecture under the constraint of cross-node federated learning, which requires that data in a network of nodes is generated locally on each node and remains decentralized. CNFGNN operates by disentangling the temporal dynamics modeling on devices and spatial dynamics on the server, utilizing alternating optimization to reduce the communication cost, facilitating computations on the edge devices. Experiments on the traffic flow forecasting task show that CNFGNN achieves the best forecasting performance in both transductive and inductive learning settings with no extra computation cost on edge devices, while incurring modest communication cost.