亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In recent years, the complexity of 5G and beyond wireless networks has escalated, prompting a need for innovative frameworks to facilitate flexible management and efficient deployment. The concept of digital twins (DTs) has emerged as a solution to enable real-time monitoring, predictive configurations, and decision-making processes. While existing works primarily focus on leveraging DTs to optimize wireless networks, a detailed mapping methodology for creating virtual representations of network infrastructure and properties is still lacking. In this context, we introduce VH-Twin, a novel time-series data-driven framework that effectively maps wireless networks into digital reality. VH-Twin distinguishes itself through complementary vertical twinning (V-twinning) and horizontal twinning (H-twinning) stages, followed by a periodic clustering mechanism used to virtualize network regions based on their distinct geological and wireless characteristics. Specifically, V-twinning exploits distributed learning techniques to initialize a global twin model collaboratively from virtualized network clusters. H-twinning, on the other hand, is implemented with an asynchronous mapping scheme that dynamically updates twin models in response to network or environmental changes. Leveraging real-world wireless traffic data within a cellular wireless network, comprehensive experiments are conducted to verify that VH-Twin can effectively construct, deploy, and maintain network DTs. Parametric analysis also offers insights into how to strike a balance between twinning efficiency and model accuracy at scale.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡(luo)會議。 Publisher:IFIP。 SIT:

In traditional federated learning, a single global model cannot perform equally well for all clients. Therefore, the need to achieve the client-level fairness in federated system has been emphasized, which can be realized by modifying the static aggregation scheme for updating the global model to an adaptive one, in response to the local signals of the participating clients. Our work reveals that existing fairness-aware aggregation strategies can be unified into an online convex optimization framework, in other words, a central server's sequential decision making process. To enhance the decision making capability, we propose simple and intuitive improvements for suboptimal designs within existing methods, presenting AAggFF. Considering practical requirements, we further subdivide our method tailored for the cross-device and the cross-silo settings, respectively. Theoretical analyses guarantee sublinear regret upper bounds for both settings: $\mathcal{O}(\sqrt{T \log{K}})$ for the cross-device setting, and $\mathcal{O}(K \log{T})$ for the cross-silo setting, with $K$ clients and $T$ federation rounds. Extensive experiments demonstrate that the federated system equipped with AAggFF achieves better degree of client-level fairness than existing methods in both practical settings. Code is available at //github.com/vaseline555/AAggFF

Trajectory forecasting is crucial for video surveillance analytics, as it enables the anticipation of future movements for a set of agents, e.g. basketball players engaged in intricate interactions with long-term intentions. Deep generative models offer a natural learning approach for trajectory forecasting, yet they encounter difficulties in achieving an optimal balance between sampling fidelity and diversity. We address this challenge by leveraging Vector Quantized Variational Autoencoders (VQ-VAEs), which utilize a discrete latent space to tackle the issue of posterior collapse. Specifically, we introduce an instance-based codebook that allows tailored latent representations for each example. In a nutshell, the rows of the codebook are dynamically adjusted to reflect contextual information (i.e., past motion patterns extracted from the observed trajectories). In this way, the discretization process gains flexibility, leading to improved reconstructions. Notably, instance-level dynamics are injected into the codebook through low-rank updates, which restrict the customization of the codebook to a lower dimension space. The resulting discrete space serves as the basis of the subsequent step, which regards the training of a diffusion-based predictive model. We show that such a two-fold framework, augmented with instance-level discretization, leads to accurate and diverse forecasts, yielding state-of-the-art performance on three established benchmarks.

Examining the behavior of multi-agent systems is vitally important to many emerging distributed applications - game theory has emerged as a powerful tool set in which to do so. The main approach of game-theoretic techniques is to model agents as players in a game, and predict the emergent behavior through the relevant Nash equilibrium. The virtue from this viewpoint is that by assuming that self-interested decision-making processes lead to Nash equilibrium, system behavior can then be captured by Nash equilibrium without studying the decision-making processes explicitly. This approach has seen success in a wide variety of domains, such as sensor coverage, traffic networks, auctions, and network coordination. However, in many other problem settings, Nash equilibrium are not necessarily guaranteed to exist or emerge from self-interested processes. Thus the main focus of the paper is on the study of sink equilibrium, which are defined as the attractors of these decision-making processes. By classifying system outcomes through a global objective function, we can analyze the resulting approximation guarantees that sink equilibrium have for a given game. Our main result is an approximation guarantee on the sink equilibrium through defining an introduced metric of misalignment, which captures how uniform agents are in their self-interested decision making. Overall, sink equilibrium are naturally occurring in many multi-agent contexts, and we display our results on their quality with respect to two practical problem settings.

We consider a decentralized optimization problem for networks affected by communication delays. Examples of such networks include collaborative machine learning, sensor networks, and multi-agent systems. To mimic communication delays, we add virtual non-computing nodes to the network, resulting in directed graphs. This motivates investigating decentralized optimization solutions on directed graphs. Existing solutions assume nodes know their out-degrees, resulting in limited applicability. To overcome this limitation, we introduce a novel gossip-based algorithm, called DT-GO, that does not need to know the out-degrees. The algorithm is applicable in general directed networks, for example networks with delays or limited acknowledgment capabilities. We derive convergence rates for both convex and non-convex objectives, showing that our algorithm achieves the same complexity order as centralized Stochastic Gradient Descent. In other words, the effects of the graph topology and delays are confined to higher-order terms. Additionally, we extend our analysis to accommodate time-varying network topologies. Numerical simulations are provided to support our theoretical findings.

Connectivity robustness, a crucial aspect for understanding, optimizing, and repairing complex networks, has traditionally been evaluated through time-consuming and often impractical simulations. Fortunately, machine learning provides a new avenue for addressing this challenge. However, several key issues remain unresolved, including the performance in more general edge removal scenarios, capturing robustness through attack curves instead of directly training for robustness, scalability of predictive tasks, and transferability of predictive capabilities. In this paper, we address these challenges by designing a convolutional neural networks (CNN) model with spatial pyramid pooling networks (SPP-net), adapting existing evaluation metrics, redesigning the attack modes, introducing appropriate filtering rules, and incorporating the value of robustness as training data. The results demonstrate the thoroughness of the proposed CNN framework in addressing the challenges of high computational time across various network types, failure component types and failure scenarios. However, the performance of the proposed CNN model varies: for evaluation tasks that are consistent with the trained network type, the proposed CNN model consistently achieves accurate evaluations of both attack curves and robustness values across all removal scenarios. When the predicted network type differs from the trained network, the CNN model still demonstrates favorable performance in the scenario of random node failure, showcasing its scalability and performance transferability. Nevertheless, the performance falls short of expectations in other removal scenarios. This observed scenario-sensitivity in the evaluation of network features has been overlooked in previous studies and necessitates further attention and optimization. Lastly, we discuss important unresolved questions and further investigation.

Over the past few years, the rapid development of deep learning technologies for computer vision has greatly promoted the performance of medical image segmentation (MedISeg). However, the recent MedISeg publications usually focus on presentations of the major contributions (e.g., network architectures, training strategies, and loss functions) while unwittingly ignoring some marginal implementation details (also known as "tricks"), leading to a potential problem of the unfair experimental result comparisons. In this paper, we collect a series of MedISeg tricks for different model implementation phases (i.e., pre-training model, data pre-processing, data augmentation, model implementation, model inference, and result post-processing), and experimentally explore the effectiveness of these tricks on the consistent baseline models. Compared to paper-driven surveys that only blandly focus on the advantages and limitation analyses of segmentation models, our work provides a large number of solid experiments and is more technically operable. With the extensive experimental results on both the representative 2D and 3D medical image datasets, we explicitly clarify the effect of these tricks. Moreover, based on the surveyed tricks, we also open-sourced a strong MedISeg repository, where each of its components has the advantage of plug-and-play. We believe that this milestone work not only completes a comprehensive and complementary survey of the state-of-the-art MedISeg approaches, but also offers a practical guide for addressing the future medical image processing challenges including but not limited to small dataset learning, class imbalance learning, multi-modality learning, and domain adaptation. The code has been released at: //github.com/hust-linyi/MedISeg

One principal approach for illuminating a black-box neural network is feature attribution, i.e. identifying the importance of input features for the network's prediction. The predictive information of features is recently proposed as a proxy for the measure of their importance. So far, the predictive information is only identified for latent features by placing an information bottleneck within the network. We propose a method to identify features with predictive information in the input domain. The method results in fine-grained identification of input features' information and is agnostic to network architecture. The core idea of our method is leveraging a bottleneck on the input that only lets input features associated with predictive latent features pass through. We compare our method with several feature attribution methods using mainstream feature attribution evaluation experiments. The code is publicly available.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

Deep convolutional neural networks (CNNs) have recently achieved great success in many visual recognition tasks. However, existing deep neural network models are computationally expensive and memory intensive, hindering their deployment in devices with low memory resources or in applications with strict latency requirements. Therefore, a natural thought is to perform model compression and acceleration in deep networks without significantly decreasing the model performance. During the past few years, tremendous progress has been made in this area. In this paper, we survey the recent advanced techniques for compacting and accelerating CNNs model developed. These techniques are roughly categorized into four schemes: parameter pruning and sharing, low-rank factorization, transferred/compact convolutional filters, and knowledge distillation. Methods of parameter pruning and sharing will be described at the beginning, after that the other techniques will be introduced. For each scheme, we provide insightful analysis regarding the performance, related applications, advantages, and drawbacks etc. Then we will go through a few very recent additional successful methods, for example, dynamic capacity networks and stochastic depths networks. After that, we survey the evaluation matrix, the main datasets used for evaluating the model performance and recent benchmarking efforts. Finally, we conclude this paper, discuss remaining challenges and possible directions on this topic.

Convolutional networks (ConvNets) have achieved great successes in various challenging vision tasks. However, the performance of ConvNets would degrade when encountering the domain shift. The domain adaptation is more significant while challenging in the field of biomedical image analysis, where cross-modality data have largely different distributions. Given that annotating the medical data is especially expensive, the supervised transfer learning approaches are not quite optimal. In this paper, we propose an unsupervised domain adaptation framework with adversarial learning for cross-modality biomedical image segmentations. Specifically, our model is based on a dilated fully convolutional network for pixel-wise prediction. Moreover, we build a plug-and-play domain adaptation module (DAM) to map the target input to features which are aligned with source domain feature space. A domain critic module (DCM) is set up for discriminating the feature space of both domains. We optimize the DAM and DCM via an adversarial loss without using any target domain label. Our proposed method is validated by adapting a ConvNet trained with MRI images to unpaired CT data for cardiac structures segmentations, and achieved very promising results.

北京阿比特科技有限公司