亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Software Engineering is an applied discipline and concepts are difficult to grasp only at a theoretical level alone. In the context of a project management course, we introduced and evaluated the use of software process simulation (SPS) based games for improving students' understanding of software development processes. The effects of the intervention were measured by evaluating the students' arguments for choosing a particular development process. The arguments were assessed with the Evidence-Based Reasoning framework, which was extended to assess the strength of an argument. The results indicate that students generally have difficulty providing strong arguments for their choice of process models. Nevertheless, the assessment indicates that the intervention of the SPS game had a positive impact on the students' arguments. Even though the illustrated argument assessment approach can be used to provide formative feedback to students, its use is rather costly and cannot be considered a replacement for traditional assessments.

相關內容

 Processing 是一門開源編程語言和與之配套的集成開發環境(IDE)的名稱。Processing 在電子藝術和視覺設計社區被用來教授編程基礎,并運用于大量的新媒體和互動藝術作品中。

In indoor scenes, reverberation is a crucial factor in degrading the perceived quality and intelligibility of speech. In this work, we propose a generative dereverberation method. Our approach is based on a probabilistic model utilizing a recurrent variational auto-encoder (RVAE) network and the convolutive transfer function (CTF) approximation. Different from most previous approaches, the output of our RVAE serves as the prior of the clean speech. And our target is the maximum a posteriori (MAP) estimation of clean speech, which is achieved iteratively through the expectation maximization (EM) algorithm. The proposed method integrates the capabilities of network-based speech prior modelling and CTF-based observation modelling. Experiments on single-channel speech dereverberation show that the proposed generative method noticeably outperforms the advanced discriminative networks.

While text-conditional 3D object generation and manipulation have seen rapid progress, the evaluation of coherence between generated 3D shapes and input textual descriptions lacks a clear benchmark. The reason is twofold: a) the low quality of the textual descriptions in the only publicly available dataset of text-shape pairs; b) the limited effectiveness of the metrics used to quantitatively assess such coherence. In this paper, we propose a comprehensive solution that addresses both weaknesses. Firstly, we employ large language models to automatically refine textual descriptions associated with shapes. Secondly, we propose a quantitative metric to assess text-to-shape coherence, through cross-attention mechanisms. To validate our approach, we conduct a user study and compare quantitatively our metric with existing ones. The refined dataset, the new metric and a set of text-shape pairs validated by the user study comprise a novel, fine-grained benchmark that we publicly release to foster research on text-to-shape coherence of text-conditioned 3D generative models. Benchmark available at //cvlab-unibo.github.io/CrossCoherence-Web/.

Iterative refinement (IR) is a popular scheme for solving a linear system of equations based on gradually improving the accuracy of an initial approximation. Originally developed to improve upon the accuracy of Gaussian elimination, interest in IR has been revived because of its suitability for execution on fast low-precision hardware such as analog devices and graphics processing units. IR generally converges when the error associated with the solution method is small, but is known to diverge when this error is large. We propose and analyze a novel enhancement to the IR algorithm by adding a line search optimization step that guarantees the algorithm will not diverge. Numerical experiments verify our theoretical results and illustrate the effectiveness of our proposed scheme.

The sequential composition of propositional logic programs has been recently introduced. This paper studies the sequential {\em decomposition} of programs by studying Green's relations $\mathcal{L,R,J}$ -- well-known in semigroup theory -- between programs. In a broader sense, this paper is a further step towards an algebraic theory of logic programming.

Quantum computing is a growing field where the information is processed by two-levels quantum states known as qubits. Current physical realizations of qubits require a careful calibration, composed by different experiments, due to noise and decoherence phenomena. Among the different characterization experiments, a crucial step is to develop a model to classify the measured state by discriminating the ground state from the excited state. In this proceedings we benchmark multiple classification techniques applied to real quantum devices.

In real life, success is often contingent upon multiple critical steps that are distant in time from each other and from the final reward. These critical steps are challenging to identify with traditional reinforcement learning (RL) methods that rely on the Bellman equation for credit assignment. Here, we present a new RL algorithm that uses offline contrastive learning to hone in on critical steps. This algorithm, which we call contrastive introspection (ConSpec), can be added to any existing RL algorithm. ConSpec learns a set of prototypes for the critical steps in a task by a novel contrastive loss and delivers an intrinsic reward when the current state matches one of these prototypes. The prototypes in ConSpec provide two key benefits for credit assignment: (1) They enable rapid identification of all the critical steps. (2) They do so in a readily interpretable manner, enabling out-of-distribution generalization when sensory features are altered. Distinct from other contemporary RL approaches to credit assignment, ConSpec takes advantage of the fact that it is easier to retrospectively identify the small set of steps that success is contingent upon than it is to prospectively predict reward at every step taken in the environment. Altogether, ConSpec improves learning in a diverse set of RL tasks, including both those with explicit, discrete critical steps and those with complex, continuous critical steps.

This study presents a comparative analysis of three predictive models with an increasing degree of flexibility: hidden dynamic geostatistical models (HDGM), generalised additive mixed models (GAMM), and the random forest spatiotemporal kriging models (RFSTK). These models are evaluated for their effectiveness in predicting PM$_{2.5}$ concentrations in Lombardy (North Italy) from 2016 to 2020. Despite differing methodologies, all models demonstrate proficient capture of spatiotemporal patterns within air pollution data with similar out-of-sample performance. Furthermore, the study delves into station-specific analyses, revealing variable model performance contingent on localised conditions. Model interpretation, facilitated by parametric coefficient analysis and partial dependence plots, unveils consistent associations between predictor variables and PM$_{2.5}$ concentrations. Despite nuanced variations in modelling spatiotemporal correlations, all models effectively accounted for the underlying dependence. In summary, this study underscores the efficacy of conventional techniques in modelling correlated spatiotemporal data, concurrently highlighting the complementary potential of Machine Learning and classical statistical approaches.

When students and users of statistical methods first learn about regression analysis there is an emphasis on the technical details of models and estimation methods that invariably runs ahead of the purposes for which these models might be used. More broadly, statistics is widely understood to provide a body of techniques for "modelling data", underpinned by what we describe as the "true model myth", according to which the task of the statistician/data analyst is to build a model that closely approximates the true data generating process. By way of our own historical examples and a brief review of mainstream clinical research journals, we describe how this perspective leads to a range of problems in the application of regression methods, including misguided "adjustment" for covariates, misinterpretation of regression coefficients and the widespread fitting of regression models without a clear purpose. We then outline an alternative approach to the teaching and application of regression methods, which begins by focussing on clear definition of the substantive research question within one of three distinct types: descriptive, predictive, or causal. The simple univariable regression model may be introduced as a tool for description, while the development and application of multivariable regression models should proceed differently according to the type of question. Regression methods will no doubt remain central to statistical practice as they provide a powerful tool for representing variation in a response or outcome variable as a function of "input" variables, but their conceptualisation and usage should follow from the purpose at hand.

Calibration is a pivotal aspect in predictive modeling, as it ensures that the predictions closely correspond with what we observe empirically. The contemporary calibration framework, however, is predominantly focused on prediction models where the outcome is a binary variable. We extend the logistic calibration framework to the generalized calibration framework which includes all members of the exponential family of distributions. We propose two different methods to estimate the calibration curve in this setting, a generalized linear model and a non-parametric smoother. In addition, we define two measures that summarize the calibration performance. The generalized calibration slope which quantifies the amount of over- or underfitting and the generalized calibration slope or calibration-in-the-large that measures the agreement between the global empirical average and the average predicted value. We provide an illustrative example using a simulated data set and hereby show how we can utilize the generalized calibration framework to assess the calibration of different types of prediction models.

The remarkable practical success of deep learning has revealed some major surprises from a theoretical perspective. In particular, simple gradient methods easily find near-optimal solutions to non-convex optimization problems, and despite giving a near-perfect fit to training data without any explicit effort to control model complexity, these methods exhibit excellent predictive accuracy. We conjecture that specific principles underlie these phenomena: that overparametrization allows gradient methods to find interpolating solutions, that these methods implicitly impose regularization, and that overparametrization leads to benign overfitting. We survey recent theoretical progress that provides examples illustrating these principles in simpler settings. We first review classical uniform convergence results and why they fall short of explaining aspects of the behavior of deep learning methods. We give examples of implicit regularization in simple settings, where gradient methods lead to minimal norm functions that perfectly fit the training data. Then we review prediction methods that exhibit benign overfitting, focusing on regression problems with quadratic loss. For these methods, we can decompose the prediction rule into a simple component that is useful for prediction and a spiky component that is useful for overfitting but, in a favorable setting, does not harm prediction accuracy. We focus specifically on the linear regime for neural networks, where the network can be approximated by a linear model. In this regime, we demonstrate the success of gradient flow, and we consider benign overfitting with two-layer networks, giving an exact asymptotic analysis that precisely demonstrates the impact of overparametrization. We conclude by highlighting the key challenges that arise in extending these insights to realistic deep learning settings.

北京阿比特科技有限公司