亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Calibration is a pivotal aspect in predictive modeling, as it ensures that the predictions closely correspond with what we observe empirically. The contemporary calibration framework, however, is predominantly focused on prediction models where the outcome is a binary variable. We extend the logistic calibration framework to the generalized calibration framework which includes all members of the exponential family of distributions. We propose two different methods to estimate the calibration curve in this setting, a generalized linear model and a non-parametric smoother. In addition, we define two measures that summarize the calibration performance. The generalized calibration slope which quantifies the amount of over- or underfitting and the generalized calibration slope or calibration-in-the-large that measures the agreement between the global empirical average and the average predicted value. We provide an illustrative example using a simulated data set and hereby show how we can utilize the generalized calibration framework to assess the calibration of different types of prediction models.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · MoDELS · INTERACT · Guidance · Performer ·
2023 年 10 月 31 日

In generalized regression models the effect of continuous covariates is commonly assumed to be linear. This assumption, however, may be too restrictive in applications and may lead to biased effect estimates and decreased predictive ability. While a multitude of alternatives for the flexible modeling of continuous covariates have been proposed, methods that provide guidance for choosing a suitable functional form are still limited. To address this issue, we propose a detection algorithm that evaluates several approaches for modeling continuous covariates and guides practitioners to choose the most appropriate alternative. The algorithm utilizes a unified framework for tree-structured modeling which makes the results easily interpretable. We assessed the performance of the algorithm by conducting a simulation study. To illustrate the proposed algorithm, we analyzed data of patients suffering from chronic kidney disease.

In this paper, we derive a kinetic description of swarming particle dynamics in an interacting multi-agent system featuring emerging leaders and followers. Agents are classically characterized by their position and velocity plus a continuous parameter quantifying their degree of leadership. The microscopic processes ruling the change of velocity and degree of leadership are independent, non-conservative and non-local in the physical space, so as to account for long-range interactions. Out of the kinetic description, we obtain then a macroscopic model under a hydrodynamic limit reminiscent of that used to tackle the hydrodynamics of weakly dissipative granular gases, thus relying in particular on a regime of small non-conservative and short-range interactions. Numerical simulations in one- and two-dimensional domains show that the limiting macroscopic model is consistent with the original particle dynamics and furthermore can reproduce classical emerging patterns typically observed in swarms.

Stress prediction in porous materials and structures is challenging due to the high computational cost associated with direct numerical simulations. Convolutional Neural Network (CNN) based architectures have recently been proposed as surrogates to approximate and extrapolate the solution of such multiscale simulations. These methodologies are usually limited to 2D problems due to the high computational cost of 3D voxel based CNNs. We propose a novel geometric learning approach based on a Graph Neural Network (GNN) that efficiently deals with three-dimensional problems by performing convolutions over 2D surfaces only. Following our previous developments using pixel-based CNN, we train the GNN to automatically add local fine-scale stress corrections to an inexpensively computed coarse stress prediction in the porous structure of interest. Our method is Bayesian and generates densities of stress fields, from which credible intervals may be extracted. As a second scientific contribution, we propose to improve the extrapolation ability of our network by deploying a strategy of online physics-based corrections. Specifically, we condition the posterior predictions of our probabilistic predictions to satisfy partial equilibrium at the microscale, at the inference stage. This is done using an Ensemble Kalman algorithm, to ensure tractability of the Bayesian conditioning operation. We show that this innovative methodology allows us to alleviate the effect of undesirable biases observed in the outputs of the uncorrected GNN, and improves the accuracy of the predictions in general.

The problem of designing learners that provide guarantees that their predictions are provably correct is of increasing importance in machine learning. However, learning theoretic guarantees have only been considered in very specific settings. In this work, we consider the design and analysis of reliable learners in challenging test-time environments as encountered in modern machine learning problems: namely `adversarial' test-time attacks (in several variations) and `natural' distribution shifts. In this work, we provide a reliable learner with provably optimal guarantees in such settings. We discuss computationally feasible implementations of the learner and further show that our algorithm achieves strong positive performance guarantees on several natural examples: for example, linear separators under log-concave distributions or smooth boundary classifiers under smooth probability distributions.

Computer model calibration involves using partial and imperfect observations of the real world to learn which values of a model's input parameters lead to outputs that are consistent with real-world observations. When calibrating models with high-dimensional output (e.g. a spatial field), it is common to represent the output as a linear combination of a small set of basis vectors. Often, when trying to calibrate to such output, what is important to the credibility of the model is that key emergent physical phenomena are represented, even if not faithfully or in the right place. In these cases, comparison of model output and data in a linear subspace is inappropriate and will usually lead to poor model calibration. To overcome this, we present kernel-based history matching (KHM), generalising the meaning of the technique sufficiently to be able to project model outputs and observations into a higher-dimensional feature space, where patterns can be compared without their location necessarily being fixed. We develop the technical methodology, present an expert-driven kernel selection algorithm, and then apply the techniques to the calibration of boundary layer clouds for the French climate model IPSL-CM.

In an era where scientific experiments can be very costly, multi-fidelity emulators provide a useful tool for cost-efficient predictive scientific computing. For scientific applications, the experimenter is often limited by a tight computational budget, and thus wishes to (i) maximize predictive power of the multi-fidelity emulator via a careful design of experiments, and (ii) ensure this model achieves a desired error tolerance with some notion of confidence. Existing design methods, however, do not jointly tackle objectives (i) and (ii). We propose a novel stacking design approach that addresses both goals. A multi-level reproducing kernel Hilbert space (RKHS) interpolator is first introduced to build the emulator, under which our stacking design provides a sequential approach for designing multi-fidelity runs such that a desired prediction error of $\epsilon > 0$ is met under regularity assumptions. We then prove a novel cost complexity theorem that, under this multi-level interpolator, establishes a bound on the computation cost (for training data simulation) needed to achieve a prediction bound of $\epsilon$. This result provides novel insights on conditions under which the proposed multi-fidelity approach improves upon a conventional RKHS interpolator which relies on a single fidelity level. Finally, we demonstrate the effectiveness of stacking designs in a suite of simulation experiments and an application to finite element analysis.

Scientists continue to develop increasingly complex mechanistic models to reflect their knowledge more realistically. Statistical inference using these models can be challenging since the corresponding likelihood function is often intractable and model simulation may be computationally burdensome. Fortunately, in many of these situations, it is possible to adopt a surrogate model or approximate likelihood function. It may be convenient to conduct Bayesian inference directly with the surrogate, but this can result in bias and poor uncertainty quantification. In this paper we propose a new method for adjusting approximate posterior samples to reduce bias and produce more accurate uncertainty quantification. We do this by optimizing a transform of the approximate posterior that maximizes a scoring rule. Our approach requires only a (fixed) small number of complex model simulations and is numerically stable. We demonstrate good performance of the new method on several examples of increasing complexity.

Multiple testing is an important research direction that has gained major attention in recent years. Currently, most multiple testing procedures are designed with p-values or Local false discovery rate (Lfdr) statistics. However, p-values obtained by applying probability integral transform to some well-known test statistics often do not incorporate information from the alternatives, resulting in suboptimal procedures. On the other hand, Lfdr based procedures can be asymptotically optimal but their guarantee on false discovery rate (FDR) control relies on consistent estimation of Lfdr, which is often difficult in practice especially when the incorporation of side information is desirable. In this article, we propose a novel and flexibly constructed class of statistics, called rho-values, which combines the merits of both p-values and Lfdr while enjoys superiorities over methods based on these two types of statistics. Specifically, it unifies these two frameworks and operates in two steps, ranking and thresholding. The ranking produced by rho-values mimics that produced by Lfdr statistics, and the strategy for choosing the threshold is similar to that of p-value based procedures. Therefore, the proposed framework guarantees FDR control under weak assumptions; it maintains the integrity of the structural information encoded by the summary statistics and the auxiliary covariates and hence can be asymptotically optimal. We demonstrate the efficacy of the new framework through extensive simulations and two data applications.

Difference-in-differences (DID) is a popular approach to identify the causal effects of treatments and policies in the presence of unmeasured confounding. DID identifies the sample average treatment effect in the treated (SATT). However, a goal of such research is often to inform decision-making in target populations outside the treated sample. Transportability methods have been developed to extend inferences from study samples to external target populations; these methods have primarily been developed and applied in settings where identification is based on conditional independence between the treatment and potential outcomes, such as in a randomized trial. This paper develops identification and estimators for effects in a target population, based on DID conducted in a study sample that differs from the target population. We present a range of assumptions under which one may identify causal effects in the target population and employ causal diagrams to illustrate these assumptions. In most realistic settings, results depend critically on the assumption that any unmeasured confounders are not effect measure modifiers on the scale of the effect of interest. We develop several estimators of transported effects, including a doubly robust estimator based on the efficient influence function. Simulation results support theoretical properties of the proposed estimators. We discuss the potential application of our approach to a study of the effects of a US federal smoke-free housing policy, where the original study was conducted in New York City alone and the goal is extend inferences to other US cities.

The main goal of this work is to improve the efficiency of training binary neural networks, which are low latency and low energy networks. The main contribution of this work is the proposal of two solutions comprised of topology changes and strategy training that allow the network to achieve near the state-of-the-art performance and efficient training. The time required for training and the memory required in the process are two factors that contribute to efficient training.

北京阿比特科技有限公司