亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Label assignment is a crucial process in object detection, which significantly influences the detection performance by determining positive or negative samples during training process. However, existing label assignment strategies barely consider the characteristics of targets in remote sensing images (RSIs) thoroughly, e.g., large variations in scales and aspect ratios, leading to insufficient and imbalanced sampling and introducing more low-quality samples, thereby limiting detection performance. To solve the above problems, an Elliptical Distribution aided Adaptive Rotation Label Assignment (EARL) is proposed to select high-quality positive samples adaptively in anchor-free detectors. Specifically, an adaptive scale sampling (ADS) strategy is presented to select samples adaptively among multi-level feature maps according to the scales of targets, which achieves sufficient sampling with more balanced scale-level sample distribution. In addition, a dynamic elliptical distribution aided sampling (DED) strategy is proposed to make the sample distribution more flexible to fit the shapes and orientations of targets, and filter out low-quality samples. Furthermore, a spatial distance weighting (SDW) module is introduced to integrate the adaptive distance weighting into loss function, which makes the detector more focused on the high-quality samples. Extensive experiments on several popular datasets demonstrate the effectiveness and superiority of our proposed EARL, where without bells and whistles, it can be easily applied to different detectors and achieve state-of-the-art performance. The source code will be available at: //github.com/Justlovesmile/EARL.

相關內容

Describing the relationship between the variables in a study domain and modelling the data generating mechanism is a fundamental problem in many empirical sciences. Probabilistic graphical models are one common approach to tackle the problem. Learning the graphical structure for such models is computationally challenging and a fervent area of current research with a plethora of algorithms being developed. To facilitate the benchmarking of different methods, we present a novel Snakemake workflow, called Benchpress for producing scalable, reproducible, and platform-independent benchmarks of structure learning algorithms for probabilistic graphical models. Benchpress is interfaced via a simple JSON-file, which makes it accessible for all users, while the code is designed in a fully modular fashion to enable researchers to contribute additional methodologies. Benchpress currently provides an interface to a large number of state-of-the-art algorithms from libraries such as BDgraph, BiDAG, bnlearn, causal-learn, gCastle, GOBNILP, pcalg, r.blip, scikit-learn, TETRAD, and trilearn as well as a variety of methods for data generating models and performance evaluation. Alongside user-defined models and randomly generated datasets, the workflow also includes a number of standard datasets and graphical models from the literature, which may be included in a benchmarking study. We demonstrate the applicability of this workflow for learning Bayesian networks in five typical data scenarios. The source code and documentation is publicly available from //benchpressdocs.readthedocs.io.

Seismic denoising is an important processing step before subsequent imaging and interpretation, which consumes a significant amount of time, whether it is for Quality control or for the associated computations. We present results of our work in training convolutional neural networks for denoising seismic data, specifically attenuation of surface related multiples and removal of overlap of shot energies during simultaneous-shooting survey. The proposed methodology is being explored not only for its ability to minimize human involvement but also because of the trained filter's ability to accelerate the process, hence, reduce processing time.

Magnetic resonance imaging (MRI) is commonly used for brain tumor segmentation, which is critical for patient evaluation and treatment planning. To reduce the labor and expertise required for labeling, weakly-supervised semantic segmentation (WSSS) methods with class activation mapping (CAM) have been proposed. However, existing CAM methods suffer from low resolution due to strided convolution and pooling layers, resulting in inaccurate predictions. In this study, we propose a novel CAM method, Attentive Multiple-Exit CAM (AME-CAM), that extracts activation maps from multiple resolutions to hierarchically aggregate and improve prediction accuracy. We evaluate our method on the BraTS 2021 dataset and show that it outperforms state-of-the-art methods.

Human activity recognition (HAR) is a key challenge in pervasive computing and its solutions have been presented based on various disciplines. Specifically, for HAR in a smart space without privacy and accessibility issues, data streams generated by deployed pervasive sensors are leveraged. In this paper, we focus on a group activity by which a group of users perform a collaborative task without user identification and propose an efficient group activity recognition scheme which extracts causality patterns from pervasive sensor event sequences generated by a group of users to support as good recognition accuracy as the state-of-the-art graphical model. To filter out irrelevant noise events from a given data stream, a set of rules is leveraged to highlight causally related events. Then, a pattern-tree algorithm extracts frequent causal patterns by means of a growing tree structure. Based on the extracted patterns, a weighted sum-based pattern matching algorithm computes the likelihoods of stored group activities to the given test event sequence by means of matched event pattern counts for group activity recognition. We evaluate the proposed scheme using the data collected from our testbed and CASAS datasets where users perform their tasks on a daily basis and validate its effectiveness in a real environment. Experiment results show that the proposed scheme performs higher recognition accuracy and with a small amount of runtime overhead than the existing schemes.

Due to its conceptual simplicity and generality, compressive neural representation has emerged as a promising alternative to traditional compression methods for managing massive volumetric datasets. The current practice of neural compression utilizes a single large multilayer perceptron (MLP) to encode the global volume, incurring slow training and inference. This paper presents an efficient compressive neural representation (ECNR) solution for time-varying data compression, utilizing the Laplacian pyramid for adaptive signal fitting. Following a multiscale structure, we leverage multiple small MLPs at each scale for fitting local content or residual blocks. By assigning similar blocks to the same MLP via size uniformization, we enable balanced parallelization among MLPs to significantly speed up training and inference. Working in concert with the multiscale structure, we tailor a deep compression strategy to compact the resulting model. We show the effectiveness of ECNR with multiple datasets and compare it with state-of-the-art compression methods (mainly SZ3, TTHRESH, and neurcomp). The results position ECNR as a promising solution for volumetric data compression.

The surge in real-time data collection across various industries has underscored the need for advanced anomaly detection in both univariate and multivariate time series data. Traditional methods, while comprehensive, often struggle to capture the complex interdependencies in such data. This paper introduces TransNAS-TSAD, a novel framework that synergizes transformer architecture with neural architecture search (NAS), enhanced through NSGA-II algorithm optimization. This innovative approach effectively tackles the complexities of both univariate and multivariate time series, balancing computational efficiency with detection accuracy. Our evaluation reveals that TransNAS-TSAD surpasses conventional anomaly detection models, demonstrating marked improvements in diverse data scenarios. We also propose the Efficiency-Accuracy-Complexity Score (EACS) as a new metric for assessing model performance, emphasizing the crucial balance between accuracy and computational resources. TransNAS-TSAD sets a new benchmark in time series anomaly detection, offering a versatile, efficient solution for complex real-world applications. This research paves the way for future developments in the field, highlighting its potential in a wide range of industry applications.

As robots become more widely available outside industrial settings, the need for reliable object grasping and manipulation is increasing. In such environments, robots must be able to grasp and manipulate novel objects in various situations. This paper presents GraspCaps, a novel architecture based on Capsule Networks for generating per-point 6D grasp configurations for familiar objects. GraspCaps extracts a rich feature vector of the objects present in the point cloud input, which is then used to generate per-point grasp vectors. This approach allows the network to learn specific grasping strategies for each object category. In addition to GraspCaps, the paper also presents a method for generating a large object-grasping dataset using simulated annealing. The obtained dataset is then used to train the GraspCaps network. Through extensive experiments, we evaluate the performance of the proposed approach, particularly in terms of the success rate of grasping familiar objects in challenging real and simulated scenarios. The experimental results showed that the overall object-grasping performance of the proposed approach is significantly better than the selected baseline. This superior performance highlights the effectiveness of the GraspCaps in achieving successful object grasping across various scenarios.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

Visual dialogue is a challenging task that needs to extract implicit information from both visual (image) and textual (dialogue history) contexts. Classical approaches pay more attention to the integration of the current question, vision knowledge and text knowledge, despising the heterogeneous semantic gaps between the cross-modal information. In the meantime, the concatenation operation has become de-facto standard to the cross-modal information fusion, which has a limited ability in information retrieval. In this paper, we propose a novel Knowledge-Bridge Graph Network (KBGN) model by using graph to bridge the cross-modal semantic relations between vision and text knowledge in fine granularity, as well as retrieving required knowledge via an adaptive information selection mode. Moreover, the reasoning clues for visual dialogue can be clearly drawn from intra-modal entities and inter-modal bridges. Experimental results on VisDial v1.0 and VisDial-Q datasets demonstrate that our model outperforms exiting models with state-of-the-art results.

Image segmentation is still an open problem especially when intensities of the interested objects are overlapped due to the presence of intensity inhomogeneity (also known as bias field). To segment images with intensity inhomogeneities, a bias correction embedded level set model is proposed where Inhomogeneities are Estimated by Orthogonal Primary Functions (IEOPF). In the proposed model, the smoothly varying bias is estimated by a linear combination of a given set of orthogonal primary functions. An inhomogeneous intensity clustering energy is then defined and membership functions of the clusters described by the level set function are introduced to rewrite the energy as a data term of the proposed model. Similar to popular level set methods, a regularization term and an arc length term are also included to regularize and smooth the level set function, respectively. The proposed model is then extended to multichannel and multiphase patterns to segment colourful images and images with multiple objects, respectively. It has been extensively tested on both synthetic and real images that are widely used in the literature and public BrainWeb and IBSR datasets. Experimental results and comparison with state-of-the-art methods demonstrate that advantages of the proposed model in terms of bias correction and segmentation accuracy.

北京阿比特科技有限公司