A linearly ordered (LO) $k$-colouring of a hypergraph is a colouring of its vertices with colours $1, \dots, k$ such that each edge contains a unique maximal colour. Deciding whether an input hypergraph admits LO $k$-colouring with a fixed number of colours is NP-complete (and in the special case of graphs, LO colouring coincides with the usual graph colouring). Here, we investigate the complexity of approximating the `linearly ordered chromatic number' of a hypergraph. We prove that the following promise problem is NP-complete: Given a 3-uniform hypergraph, distinguish between the case that it is LO $3$-colourable, and the case that it is not even LO $4$-colourable. We prove this result by a combination of algebraic, topological, and combinatorial methods, building on and extending a topological approach for studying approximate graph colouring introduced by Krokhin, Opr\v{s}al, Wrochna, and \v{Z}ivn\'y (2023).
We study the notion of $k$-stabilizer universal quantum state, that is, an $n$-qubit quantum state, such that it is possible to induce any stabilizer state on any $k$ qubits, by using only local operations and classical communications. These states generalize the notion of $k$-pairable states introduced by Bravyi et al., and can be studied from a combinatorial perspective using graph states and $k$-vertex-minor universal graphs. First, we demonstrate the existence of $k$-stabilizer universal graph states that are optimal in size with $n=\Theta(k^2)$ qubits. We also provide parameters for which a random graph state on $\Theta(k^2)$ qubits is $k$-stabilizer universal with high probability. Our second contribution consists of two explicit constructions of $k$-stabilizer universal graph states on $n = O(k^4)$ qubits. Both rely upon the incidence graph of the projective plane over a finite field $\mathbb{F}_q$. This provides a major improvement over the previously known explicit construction of $k$-pairable graph states with $n = O(2^{3k})$, bringing forth a new and potentially powerful family of multipartite quantum resources.
A $r$-role assignment of a simple graph $G$ is an assignment of $r$ distinct roles to the vertices of $G$, such that two vertices with the same role have the same set of roles assigned to related vertices. Furthermore, a specific $r$-role assignment defines a role graph, in which the vertices are the distinct $r$ roles, and there is an edge between two roles whenever there are two related vertices in the graph $G$ that correspond to these roles. We consider complementary prisms, which are graphs formed from the disjoint union of the graph with its respective complement, adding the edges of a perfect matching between their corresponding vertices. In this work, we characterize the complementary prisms that do not admit a $3$-role assignment. We highlight that all of them are complementary prisms of disconnected bipartite graphs. Moreover, using our findings, we show that the problem of deciding whether a complementary prism has a $3$-role assignment can be solved in polynomial time.
For a state $\rho_{A_1^n B}$, we call a sequence of states $(\sigma_{A_1^k B}^{(k)})_{k=1}^n$ an approximation chain if for every $1 \leq k \leq n$, $\rho_{A_1^k B} \approx_\epsilon \sigma_{A_1^k B}^{(k)}$. In general, it is not possible to lower bound the smooth min-entropy of such a $\rho_{A_1^n B}$, in terms of the entropies of $\sigma_{A_1^k B}^{(k)}$ without incurring very large penalty factors. In this paper, we study such approximation chains under additional assumptions. We begin by proving a simple entropic triangle inequality, which allows us to bound the smooth min-entropy of a state in terms of the R\'enyi entropy of an arbitrary auxiliary state while taking into account the smooth max-relative entropy between the two. Using this triangle inequality, we create lower bounds for the smooth min-entropy of a state in terms of the entropies of its approximation chain in various scenarios. In particular, utilising this approach, we prove approximate versions of the asymptotic equipartition property and entropy accumulation. In our companion paper, we show that the techniques developed in this paper can be used to prove the security of quantum key distribution in the presence of source correlations.
We analyze an algorithmic question about immersion theory: for which $m$, $n$, and $CAT=\mathbf{Diff}$ or $\mathbf{PL}$ is the question of whether an $m$-dimensional $CAT$-manifold is immersible in $\mathbb{R}^n$ decidable? As a corollary, we show that the smooth embeddability of an $m$-manifold with boundary in $\mathbb{R}^n$ is undecidable when $n-m$ is even and $11m \geq 10n+1$.
Let $\mathbf{G}:=(G_1, G_2, G_3)$ be a triple of graphs on the same vertex set $V$ of size $n$. A rainbow triangle in $\mathbf{G}$ is a triple of edges $(e_1, e_2, e_3)$ with $e_i\in G_i$ for each $i$ and $\{e_1, e_2, e_3\}$ forming a triangle in $V$. The triples $\mathbf{G}$ not containing rainbow triangles, also known as Gallai colouring templates, are a widely studied class of objects in extremal combinatorics. In the present work, we fully determine the set of edge densities $(\alpha_1, \alpha_2, \alpha_3)$ such that if $\vert E(G_i)\vert> \alpha_i n^2$ for each $i$ and $n$ is sufficiently large, then $\mathbf{G}$ must contain a rainbow triangle. This resolves a problem raised by Aharoni, DeVos, de la Maza, Montejanos and \v{S}\'amal, generalises several previous results on extremal Gallai colouring templates, and proves a recent conjecture of Frankl, Gy\"ori, He, Lv, Salia, Tompkins, Varga and Zhu.
Classical Krylov subspace projection methods for the solution of linear problem $Ax = b$ output an approximate solution $\widetilde{x}\simeq x$. Recently, it has been recognized that projection methods can be understood from a statistical perspective. These probabilistic projection methods return a distribution $p(\widetilde{x})$ in place of a point estimate $\widetilde{x}$. The resulting uncertainty, codified as a distribution, can, in theory, be meaningfully combined with other uncertainties, can be propagated through computational pipelines, and can be used in the framework of probabilistic decision theory. The problem we address is that the current probabilistic projection methods lead to the poorly calibrated posterior distribution. We improve the covariance matrix from previous works in a way that it does not contain such undesirable objects as $A^{-1}$ or $A^{-1}A^{-T}$, results in nontrivial uncertainty, and reproduces an arbitrary projection method as a mean of the posterior distribution. We also propose a variant that is numerically inexpensive in the case the uncertainty is calibrated a priori. Since it usually is not, we put forward a practical way to calibrate uncertainty that performs reasonably well, albeit at the expense of roughly doubling the numerical cost of the underlying projection method.
We expound on some known lower bounds of the quadratic Wasserstein distance between random vectors in $\mathbb{R}^n$ with an emphasis on affine transformations that have been used in manifold learning of data in Wasserstein space. In particular, we give concrete lower bounds for rotated copies of random vectors in $\mathbb{R}^2$ by computing the Bures metric between the covariance matrices. We also derive upper bounds for compositions of affine maps which yield a fruitful variety of diffeomorphisms applied to an initial data measure. We apply these bounds to various distributions including those lying on a 1-dimensional manifold in $\mathbb{R}^2$ and illustrate the quality of the bounds. Finally, we give a framework for mimicking handwritten digit or alphabet datasets that can be applied in a manifold learning framework.
Given a graph~$G$, the domination number, denoted by~$\gamma(G)$, is the minimum cardinality of a dominating set in~$G$. Dual to the notion of domination number is the packing number of a graph. A packing of~$G$ is a set of vertices whose pairwise distance is at least three. The packing number~$\rho(G)$ of~$G$ is the maximum cardinality of one such set. Furthermore, the inequality~$\rho(G) \leq \gamma(G)$ is well-known. Henning et al.\ conjectured that~$\gamma(G) \leq 2\rho(G)+1$ if~$G$ is subcubic. In this paper we progress towards this conjecture by showing that~${\gamma(G) \leq \frac{120}{49}\rho(G)}$ if~$G$ is a bipartite cubic graph. We also show that $\gamma(G) \leq 3\rho(G)$ if~$G$ is a maximal outerplanar graph, and that~$\gamma(G) \leq 2\rho(G)$ if~$G$ is a biconvex graph. Moreover, in the last case, we show that this upper bound is tight.
We introduce $\varepsilon$-approximate versions of the notion of Euclidean vector bundle for $\varepsilon \geq 0$, which recover the classical notion of Euclidean vector bundle when $\varepsilon = 0$. In particular, we study \v{C}ech cochains with coefficients in the orthogonal group that satisfy an approximate cocycle condition. We show that $\varepsilon$-approximate vector bundles can be used to represent classical vector bundles when $\varepsilon > 0$ is sufficiently small. We also introduce distances between approximate vector bundles and use them to prove that sufficiently similar approximate vector bundles represent the same classical vector bundle. This gives a way of specifying vector bundles over finite simplicial complexes using a finite amount of data, and also allows for some tolerance to noise when working with vector bundles in an applied setting. As an example, we prove a reconstruction theorem for vector bundles from finite samples. We give algorithms for the effective computation of low-dimensional characteristic classes of vector bundles directly from discrete and approximate representations and illustrate the usage of these algorithms with computational examples.
This paper describes a geometrical method for finding the roots $r_1$, $r_2$ of a quadratic equation in one complex variable of the form $x^2+c_1 x+c_2=0$, by means of a Line $L$ and a Circumference $C$ in the complex plane, constructed from known coefficients $c_1$, $c_2$. This Line-Circumference (LC) geometric structure contains the sought roots $r_1$, $r_2$ at the intersections of its component elements $L$ and $C$. Line $L$ in the LC structure is mapped onto Circumference $C$ by a Mobius transformation. The location and inclination angle of Line $L$ can be computed directly from coefficients $c_1$, $c_2$, while Circumference $C$ is constructed by dividing the constant term $c_2$ by each point from Line $L$. This paper describes and develops the technical details for the LC Method, and then shows how the LC Method works through a numerical example. The quadratic LC method described here can be extended to polynomials in one variable of degree greater than two, in order to find initial approximations to their roots. As an additional feature, this paper also studies an interesting property of the rectilinear segments connecting key points in a quadratic LC structure.