亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study the notion of $k$-stabilizer universal quantum state, that is, an $n$-qubit quantum state, such that it is possible to induce any stabilizer state on any $k$ qubits, by using only local operations and classical communications. These states generalize the notion of $k$-pairable states introduced by Bravyi et al., and can be studied from a combinatorial perspective using graph states and $k$-vertex-minor universal graphs. First, we demonstrate the existence of $k$-stabilizer universal graph states that are optimal in size with $n=\Theta(k^2)$ qubits. We also provide parameters for which a random graph state on $\Theta(k^2)$ qubits is $k$-stabilizer universal with high probability. Our second contribution consists of two explicit constructions of $k$-stabilizer universal graph states on $n = O(k^4)$ qubits. Both rely upon the incidence graph of the projective plane over a finite field $\mathbb{F}_q$. This provides a major improvement over the previously known explicit construction of $k$-pairable graph states with $n = O(2^{3k})$, bringing forth a new and potentially powerful family of multipartite quantum resources.

相關內容

Decision making and learning in the presence of uncertainty has attracted significant attention in view of the increasing need to achieve robust and reliable operations. In the case where uncertainty stems from the presence of adversarial attacks this need is becoming more prominent. In this paper we focus on linear and nonlinear classification problems and propose a novel adversarial training method for robust classifiers, inspired by Support Vector Machine (SVM) margins. We view robustness under a data driven lens, and derive finite sample complexity bounds for both linear and non-linear classifiers in binary and multi-class scenarios. Notably, our bounds match natural classifiers' complexity. Our algorithm minimizes a worst-case surrogate loss using Linear Programming (LP) and Second Order Cone Programming (SOCP) for linear and non-linear models. Numerical experiments on the benchmark MNIST and CIFAR10 datasets show our approach's comparable performance to state-of-the-art methods, without needing adversarial examples during training. Our work offers a comprehensive framework for enhancing binary linear and non-linear classifier robustness, embedding robustness in learning under the presence of adversaries.

Given a hypergraph $\mathcal{H}$, the dual hypergraph of $\mathcal{H}$ is the hypergraph of all minimal transversals of $\mathcal{H}$. The dual hypergraph is always Sperner, that is, no hyperedge contains another. A special case of Sperner hypergraphs are the conformal Sperner hypergraphs, which correspond to the families of maximal cliques of graphs. All these notions play an important role in many fields of mathematics and computer science, including combinatorics, algebra, database theory, etc. In this paper we study conformality of dual hypergraphs and prove several results related to the problem of recognizing this property. In particular, we show that the problem is in co-NP and can be solved in polynomial time for hypergraphs of bounded dimension. In the special case of dimension $3$, we reduce the problem to $2$-Satisfiability. Our approach has an implication in algorithmic graph theory: we obtain a polynomial-time algorithm for recognizing graphs in which all minimal transversals of maximal cliques have size at most $k$, for any fixed $k$.

For the Euler scheme of the stochastic linear evolution equations, discrete stochastic maximal $ L^p $-regularity estimate is established, and a sharp error estimate in the norm $ \|\cdot\|_{L^p((0,T)\times\Omega;L^q(\mathcal O))} $, $ p,q \in [2,\infty) $, is derived via a duality argument.

The aim of this paper is to study the complexity of the model checking problem MC for inquisitive propositional logic InqB and for inquisitive modal logic InqM, that is, the problem of deciding whether a given finite structure for the logic satisfies a given formula. In recent years, this problem has been thoroughly investigated for several variations of dependence and teams logics, systems closely related to inquisitive logic. Building upon some ideas presented by Yang, we prove that the model checking problems for InqB and InqM are both AP-complete.

We consider the problem of approximating a function from $L^2$ by an element of a given $m$-dimensional space $V_m$, associated with some feature map $\varphi$, using evaluations of the function at random points $x_1,\dots,x_n$. After recalling some results on optimal weighted least-squares using independent and identically distributed points, we consider weighted least-squares using projection determinantal point processes (DPP) or volume sampling. These distributions introduce dependence between the points that promotes diversity in the selected features $\varphi(x_i)$. We first provide a generalized version of volume-rescaled sampling yielding quasi-optimality results in expectation with a number of samples $n = O(m\log(m))$, that means that the expected $L^2$ error is bounded by a constant times the best approximation error in $L^2$. Also, further assuming that the function is in some normed vector space $H$ continuously embedded in $L^2$, we further prove that the approximation is almost surely bounded by the best approximation error measured in the $H$-norm. This includes the cases of functions from $L^\infty$ or reproducing kernel Hilbert spaces. Finally, we present an alternative strategy consisting in using independent repetitions of projection DPP (or volume sampling), yielding similar error bounds as with i.i.d. or volume sampling, but in practice with a much lower number of samples. Numerical experiments illustrate the performance of the different strategies.

We study the equational theory of the Weihrauch lattice with multiplication, meaning the collection of equations between terms built from variables, the lattice operations $\sqcup$, $\sqcap$, the product $\times$, and the finite parallelization $(-)^*$ which are true however we substitute Weihrauch degrees for the variables. We provide a combinatorial description of these in terms of a reducibility between finite graphs, and moreover, show that deciding which equations are true in this sense is complete for the third level of the polynomial hierarchy.

Although the asymptotic properties of the parameter estimator have been derived in the $p_{0}$ model for directed graphs with the differentially private bi-degree sequence, asymptotic theory in general models is still lacking. In this paper, we release the bi-degree sequence of directed graphs via the discrete Laplace mechanism, which satisfies differential privacy. We use the moment method to estimate the unknown model parameter. We establish a unified asymptotic result, in which consistency and asymptotic normality of the differentially private estimator holds. We apply the unified theoretical result to the Probit model. Simulations and a real data demonstrate our theoretical findings.

Polyhedral affinoid algebras have been introduced by Einsiedler, Kapranov and Lind to connect rigid analytic geometry (analytic geometry over non-archimedean fields) and tropical geometry.In this article, we present a theory of Gr{\"o}bner bases for polytopal affinoid algebras that extends both Caruso et al.'s theory of Gr{\"o}bner bases on Tate algebras and Pauer et al.'s theory of Gr{\"o}bner bases on Laurent polynomials.We provide effective algorithms to compute Gr{\"o}bner bases for both ideals of Laurent polynomials and ideals in polytopal affinoid algebras. Experiments with a Sagemath implementation are provided.

We present a finite element approach for diffusion problems with thermal fluctuations based on a fluctuating hydrodynamics model. The governing transport equations are stochastic partial differential equations with a fluctuating forcing term. We propose a discrete formulation of the stochastic forcing term that has the correct covariance matrix up to a standard discretization error. Furthermore, to obtain a numerical solution with spatial correlations that converge to those of the continuum equation, we derive a linear mapping to transform the finite element solution into an equivalent discrete solution that is free from the artificial correlations introduced by the spatial discretization. The method is validated by applying it to two diffusion problems: a second-order diffusion equation and a fourth-order diffusion equation. The theoretical (continuum) solution to the first case presents spatially decorrelated fluctuations, while the second case presents fluctuations correlated over a finite length. In both cases, the numerical solution presents a structure factor that approximates well the continuum one.

We derive information-theoretic generalization bounds for supervised learning algorithms based on the information contained in predictions rather than in the output of the training algorithm. These bounds improve over the existing information-theoretic bounds, are applicable to a wider range of algorithms, and solve two key challenges: (a) they give meaningful results for deterministic algorithms and (b) they are significantly easier to estimate. We show experimentally that the proposed bounds closely follow the generalization gap in practical scenarios for deep learning.

北京阿比特科技有限公司