亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Compiler correctness is crucial, as miscompilation falsifying the program behaviors can lead to serious consequences. In the literature, fuzzing has been extensively studied to uncover compiler defects. However, compiler fuzzing remains challenging: Existing arts focus on black- and grey-box fuzzing, which generates tests without sufficient understanding of internal compiler behaviors. As such, they often fail to construct programs to exercise conditions of intricate optimizations. Meanwhile, traditional white-box techniques are computationally inapplicable to the giant codebase of compilers. Recent advances demonstrate that Large Language Models (LLMs) excel in code generation/understanding tasks and have achieved state-of-the-art performance in black-box fuzzing. Nonetheless, prompting LLMs with compiler source-code information remains a missing piece of research in compiler testing. To this end, we propose WhiteFox, the first white-box compiler fuzzer using LLMs with source-code information to test compiler optimization. WhiteFox adopts a dual-model framework: (i) an analysis LLM examines the low-level optimization source code and produces requirements on the high-level test programs that can trigger the optimization; (ii) a generation LLM produces test programs based on the summarized requirements. Additionally, optimization-triggering tests are used as feedback to further enhance the test generation on the fly. Our evaluation on four popular compilers shows that WhiteFox can generate high-quality tests to exercise deep optimizations requiring intricate conditions, practicing up to 80 more optimizations than state-of-the-art fuzzers. To date, WhiteFox has found in total 96 bugs, with 80 confirmed as previously unknown and 51 already fixed. Beyond compiler testing, WhiteFox can also be adapted for white-box fuzzing of other complex, real-world software systems in general.

相關內容

 編譯器(Compiler),是一種計算機程序,它會將用某種編程語言寫成的源代碼(原始語言),轉換成另一種編程語言(目標語言)。

Early action recognition is an important and challenging problem that enables the recognition of an action from a partially observed video stream where the activity is potentially unfinished or even not started. In this work, we propose a novel model that learns a prototypical representation of the full action for each class and uses it to regularize the architecture and the visual representations of the partial observations. Our model is very simple in design and also efficient. We decompose the video into short clips, where a visual encoder extracts features from each clip independently. Later, a decoder aggregates together in an online fashion features from all the clips for the final class prediction. During training, for each partial observation, the model is jointly trained to both predict the label as well as the action prototypical representation which acts as a regularizer. We evaluate our method on multiple challenging real-world datasets and outperform the current state-of-the-art by a significant margin. For example, on early recognition observing only the first 10% of each video, our method improves the SOTA by +2.23 Top-1 accuracy on Something-Something-v2, +3.55 on UCF-101, +3.68 on SSsub21, and +5.03 on EPIC-Kitchens-55, where prior work used either multi-modal inputs (e.g. optical-flow) or batched inference. Finally, we also present exhaustive ablation studies to motivate the design choices we made, as well as gather insights regarding what our model is learning semantically.

With the strong robusticity on illumination variations, near-infrared (NIR) can be an effective and essential complement to visible (VIS) facial expression recognition in low lighting or complete darkness conditions. However, facial expression recognition (FER) from NIR images presents more challenging problem than traditional FER due to the limitations imposed by the data scale and the difficulty of extracting discriminative features from incomplete visible lighting contents. In this paper, we give the first attempt to deep NIR facial expression recognition and proposed a novel method called near-infrared facial expression transformer (NFER-Former). Specifically, to make full use of the abundant label information in the field of VIS, we introduce a Self-Attention Orthogonal Decomposition mechanism that disentangles the expression information and spectrum information from the input image, so that the expression features can be extracted without the interference of spectrum variation. We also propose a Hypergraph-Guided Feature Embedding method that models some key facial behaviors and learns the structure of the complex correlations between them, thereby alleviating the interference of inter-class similarity. Additionally, we have constructed a large NIR-VIS Facial Expression dataset that includes 360 subjects to better validate the efficiency of NFER-Former. Extensive experiments and ablation studies show that NFER-Former significantly improves the performance of NIR FER and achieves state-of-the-art results on the only two available NIR FER datasets, Oulu-CASIA and Large-HFE.

Multiple defendants in a criminal fact description generally exhibit complex interactions, and cannot be well handled by existing Legal Judgment Prediction (LJP) methods which focus on predicting judgment results (e.g., law articles, charges, and terms of penalty) for single-defendant cases. To address this problem, we propose the task of multi-defendant LJP, which aims to automatically predict the judgment results for each defendant of multi-defendant cases. Two challenges arise with the task of multi-defendant LJP: (1) indistinguishable judgment results among various defendants; and (2) the lack of a real-world dataset for training and evaluation. To tackle the first challenge, we formalize the multi-defendant judgment process as hierarchical reasoning chains and introduce a multi-defendant LJP method, named Hierarchical Reasoning Network (HRN), which follows the hierarchical reasoning chains to determine criminal relationships, sentencing circumstances, law articles, charges, and terms of penalty for each defendant. To tackle the second challenge, we collect a real-world multi-defendant LJP dataset, namely MultiLJP, to accelerate the relevant research in the future. Extensive experiments on MultiLJP verify the effectiveness of our proposed HRN.

We consider the high-dimensional linear regression model and assume that a fraction of the measurements are altered by an adversary with complete knowledge of the data and the underlying distribution. We are interested in a scenario where dense additive noise is heavy-tailed while the measurement vectors follow a sub-Gaussian distribution. Within this framework, we establish minimax lower bounds for the performance of an arbitrary estimator that depend on the the fraction of corrupted observations as well as the tail behavior of the additive noise. Moreover, we design a modification of the so-called Square-Root Slope estimator with several desirable features: (a) it is provably robust to adversarial contamination, and satisfies performance guarantees in the form of sub-Gaussian deviation inequalities that match the lower error bounds, up to logarithmic factors; (b) it is fully adaptive with respect to the unknown sparsity level and the variance of the additive noise, and (c) it is computationally tractable as a solution of a convex optimization problem. To analyze performance of the proposed estimator, we prove several properties of matrices with sub-Gaussian rows that may be of independent interest.

Improving neural machine translation (NMT) systems with prompting has achieved significant progress in recent years. In this work, we focus on how to integrate multi-knowledge, multiple types of knowledge, into NMT models to enhance the performance with prompting. We propose a unified framework, which can integrate effectively multiple types of knowledge including sentences, terminologies/phrases and translation templates into NMT models. We utilize multiple types of knowledge as prefix-prompts of input for the encoder and decoder of NMT models to guide the translation process. The approach requires no changes to the model architecture and effectively adapts to domain-specific translation without retraining. The experiments on English-Chinese and English-German translation demonstrate that our approach significantly outperform strong baselines, achieving high translation quality and terminology match accuracy.

We address the problem of parameter estimation for degenerate diffusion processes defined via the solution of Stochastic Differential Equations (SDEs) with diffusion matrix that is not full-rank. For this class of hypo-elliptic diffusions recent works have proposed contrast estimators that are asymptotically normal, provided that the step-size in-between observations $\Delta=\Delta_n$ and their total number $n$ satisfy $n \to \infty$, $n \Delta_n \to \infty$, $\Delta_n \to 0$, and additionally $\Delta_n = o (n^{-1/2})$. This latter restriction places a requirement for a so-called `rapidly increasing experimental design'. In this paper, we overcome this limitation and develop a general contrast estimator satisfying asymptotic normality under the weaker design condition $\Delta_n = o(n^{-1/p})$ for general $p \ge 2$. Such a result has been obtained for elliptic SDEs in the literature, but its derivation in a hypo-elliptic setting is highly non-trivial. We provide numerical results to illustrate the advantages of the developed theory.

This paper considers stochastic-constrained stochastic optimization where the stochastic constraint is to satisfy that the expectation of a random function is below a certain threshold. In particular, we study the setting where data samples are drawn from a Markov chain and thus are not independent and identically distributed. We generalize the drift-plus-penalty framework, a primal-dual stochastic gradient method developed for the i.i.d. case, to the Markov chain sampling setting. We propose two variants of drift-plus-penalty; one is for the case when the mixing time of the underlying Markov chain is known while the other is for the case of unknown mixing time. In fact, our algorithms apply to a more general setting of constrained online convex optimization where the sequence of constraint functions follows a Markov chain. Both algorithms are adaptive in that the first works without knowledge of the time horizon while the second uses AdaGrad-style algorithm parameters, which is of independent interest. We demonstrate the effectiveness of our proposed methods through numerical experiments on classification with fairness constraints.

Graphs are important data representations for describing objects and their relationships, which appear in a wide diversity of real-world scenarios. As one of a critical problem in this area, graph generation considers learning the distributions of given graphs and generating more novel graphs. Owing to their wide range of applications, generative models for graphs, which have a rich history, however, are traditionally hand-crafted and only capable of modeling a few statistical properties of graphs. Recent advances in deep generative models for graph generation is an important step towards improving the fidelity of generated graphs and paves the way for new kinds of applications. This article provides an extensive overview of the literature in the field of deep generative models for graph generation. Firstly, the formal definition of deep generative models for the graph generation and the preliminary knowledge are provided. Secondly, taxonomies of deep generative models for both unconditional and conditional graph generation are proposed respectively; the existing works of each are compared and analyzed. After that, an overview of the evaluation metrics in this specific domain is provided. Finally, the applications that deep graph generation enables are summarized and five promising future research directions are highlighted.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.

We investigate the problem of automatically determining what type of shoe left an impression found at a crime scene. This recognition problem is made difficult by the variability in types of crime scene evidence (ranging from traces of dust or oil on hard surfaces to impressions made in soil) and the lack of comprehensive databases of shoe outsole tread patterns. We find that mid-level features extracted by pre-trained convolutional neural nets are surprisingly effective descriptors for this specialized domains. However, the choice of similarity measure for matching exemplars to a query image is essential to good performance. For matching multi-channel deep features, we propose the use of multi-channel normalized cross-correlation and analyze its effectiveness. Our proposed metric significantly improves performance in matching crime scene shoeprints to laboratory test impressions. We also show its effectiveness in other cross-domain image retrieval problems: matching facade images to segmentation labels and aerial photos to map images. Finally, we introduce a discriminatively trained variant and fine-tune our system through our proposed metric, obtaining state-of-the-art performance.

北京阿比特科技有限公司