亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The current study focuses on systematically analyzing the recent advances in the field of Multimodal eXplainable Artificial Intelligence (MXAI). In particular, the relevant primary prediction tasks and publicly available datasets are initially described. Subsequently, a structured presentation of the MXAI methods of the literature is provided, taking into account the following criteria: a) The number of the involved modalities, b) The stage at which explanations are produced, and c) The type of the adopted methodology (i.e. mathematical formalism). Then, the metrics used for MXAI evaluation are discussed. Finally, a comprehensive analysis of current challenges and future research directions is provided.

相關內容

The prevailing discourse around AI ethics lacks the language and formalism necessary to capture the diverse ethical concerns that emerge when AI systems interact with individuals. Drawing on Sen and Nussbaum's capability approach, we present a framework formalizing a network of ethical concepts and entitlements necessary for AI systems to confer meaningful benefit or assistance to stakeholders. Such systems enhance stakeholders' ability to advance their life plans and well-being while upholding their fundamental rights. We characterize two necessary conditions for morally permissible interactions between AI systems and those impacted by their functioning, and two sufficient conditions for realizing the ideal of meaningful benefit. We then contrast this ideal with several salient failure modes, namely, forms of social interactions that constitute unjustified paternalism, coercion, deception, exploitation and domination. The proliferation of incidents involving AI in high-stakes domains underscores the gravity of these issues and the imperative to take an ethics-led approach to AI systems from their inception.

This two-part comprehensive survey is devoted to a computing framework most commonly known under the names Hyperdimensional Computing and Vector Symbolic Architectures (HDC/VSA). Both names refer to a family of computational models that use high-dimensional distributed representations and rely on the algebraic properties of their key operations to incorporate the advantages of structured symbolic representations and vector distributed representations. Notable models in the HDC/VSA family are Tensor Product Representations, Holographic Reduced Representations, Multiply-Add-Permute, Binary Spatter Codes, and Sparse Binary Distributed Representations but there are other models too. HDC/VSA is a highly interdisciplinary field with connections to computer science, electrical engineering, artificial intelligence, mathematics, and cognitive science. This fact makes it challenging to create a thorough overview of the field. However, due to a surge of new researchers joining the field in recent years, the necessity for a comprehensive survey of the field has become extremely important. Therefore, amongst other aspects of the field, this Part I surveys important aspects such as: known computational models of HDC/VSA and transformations of various input data types to high-dimensional distributed representations. Part II of this survey is devoted to applications, cognitive computing and architectures, as well as directions for future work. The survey is written to be useful for both newcomers and practitioners.

In modern dialogue systems, the use of Large Language Models (LLMs) has grown exponentially due to their capacity to generate diverse, relevant, and creative responses. Despite their strengths, striking a balance between the LLMs' creativity and their faithfulness to external knowledge remains a key challenge. This paper presents an innovative user-controllable mechanism that modulates the balance between an LLM's imaginative capabilities and its adherence to factual information. Our approach incorporates a numerical tag during the fine-tuning phase of the LLM's training, representing the degree of faithfulness to the reference knowledge in the generated responses. This degree is computed through an automated process that measures lexical overlap using ROUGE scores, semantic similarity using Sentence-BERT embeddings, and an LLM's self-evaluation score. During model inference, users can manipulate this numerical tag, thus controlling the degree of the LLM's reliance on external knowledge. We conduct extensive experiments across various scenarios, demonstrating the adaptability of our method and its efficacy in ensuring the quality and accuracy of the LLM's responses. The results highlight the potential of our approach to enhance the versatility of LLMs while maintaining a balance between creativity and hallucination.

This paper presents the methodology and data used for the automatic extraction of the Romanian Academic Word List (Ro-AWL). Academic Word Lists are useful in both L2 and L1 teaching contexts. For the Romanian language, no such resource exists so far. Ro-AWL has been generated by combining methods from corpus and computational linguistics with L2 academic writing approaches. We use two types of data: (a) existing data, such as the Romanian Frequency List based on the ROMBAC corpus, and (b) self-compiled data, such as the expert academic writing corpus EXPRES. For constructing the academic word list, we follow the methodology for building the Academic Vocabulary List for the English language. The distribution of Ro-AWL features (general distribution, POS distribution) into four disciplinary datasets is in line with previous research. Ro-AWL is freely available and can be used for teaching, research and NLP applications.

Large-scale language models such as DNABert and LOGO aim to learn optimal gene representations and are trained on the entire Human Reference Genome. However, standard tokenization schemes involve a simple sliding window of tokens like k-mers that do not leverage any gene-based semantics and thus may lead to (trivial) masking of easily predictable sequences and subsequently inefficient Masked Language Modeling (MLM) training. Therefore, we propose a novel masking algorithm, GeneMask, for MLM training of gene sequences, where we randomly identify positions in a gene sequence as mask centers and locally select the span around the mask center with the highest Normalized Pointwise Mutual Information (NPMI) to mask. We observe that in the absence of human-understandable semantics in the genomics domain (in contrast, semantic units like words and phrases are inherently available in NLP), GeneMask-based models substantially outperform the SOTA models (DNABert and LOGO) over four benchmark gene sequence classification datasets in five few-shot settings (10 to 1000-shot). More significantly, the GeneMask-based DNABert model is trained for less than one-tenth of the number of epochs of the original SOTA model. We also observe a strong correlation between top-ranked PMI tokens and conserved DNA sequence motifs, which may indicate the incorporation of latent genomic information. The codes (including trained models) and datasets are made publicly available at //github.com/roysoumya/GeneMask.

Humour is a substantial element of human affect and cognition. Its automatic understanding can facilitate a more naturalistic human-device interaction and the humanisation of artificial intelligence. Current methods of humour detection are solely based on staged data making them inadequate for 'real-world' applications. We address this deficiency by introducing the novel Passau-Spontaneous Football Coach Humour (Passau-SFCH) dataset, comprising of about 11 hours of recordings. The Passau-SFCH dataset is annotated for the presence of humour and its dimensions (sentiment and direction) as proposed in Martin's Humor Style Questionnaire. We conduct a series of experiments, employing pretrained Transformers, convolutional neural networks, and expert-designed features. The performance of each modality (text, audio, video) for spontaneous humour recognition is analysed and their complementarity is investigated. Our findings suggest that for the automatic analysis of humour and its sentiment, facial expressions are most promising, while humour direction can be best modelled via text-based features. The results reveal considerable differences among various subjects, highlighting the individuality of humour usage and style. Further, we observe that a decision-level fusion yields the best recognition result. Finally, we make our code publicly available at //www.github.com/EIHW/passau-sfch. The Passau-SFCH dataset is available upon request.

Artificial Intelligence (AI) refers to the intelligence demonstrated by machines, and within the realm of AI, Machine Learning (ML) stands as a notable subset. ML employs algorithms that undergo training on data sets, enabling them to carry out specific tasks autonomously. Notably, AI holds immense potential in the field of software engineering, particularly in project management and planning. In this literature survey, we explore the use of AI in Software Engineering and summarize previous works in this area. We first review eleven different publications related to this subject, then compare the surveyed works. We then comment on the possible challenges present in the utilization of AI in software engineering and suggest possible further research avenues and the ways in which AI could evolve with software engineering in the future.

Recently, Mutual Information (MI) has attracted attention in bounding the generalization error of Deep Neural Networks (DNNs). However, it is intractable to accurately estimate the MI in DNNs, thus most previous works have to relax the MI bound, which in turn weakens the information theoretic explanation for generalization. To address the limitation, this paper introduces a probabilistic representation of DNNs for accurately estimating the MI. Leveraging the proposed MI estimator, we validate the information theoretic explanation for generalization, and derive a tighter generalization bound than the state-of-the-art relaxations.

Graph Neural Networks (GNNs) have been studied from the lens of expressive power and generalization. However, their optimization properties are less well understood. We take the first step towards analyzing GNN training by studying the gradient dynamics of GNNs. First, we analyze linearized GNNs and prove that despite the non-convexity of training, convergence to a global minimum at a linear rate is guaranteed under mild assumptions that we validate on real-world graphs. Second, we study what may affect the GNNs' training speed. Our results show that the training of GNNs is implicitly accelerated by skip connections, more depth, and/or a good label distribution. Empirical results confirm that our theoretical results for linearized GNNs align with the training behavior of nonlinear GNNs. Our results provide the first theoretical support for the success of GNNs with skip connections in terms of optimization, and suggest that deep GNNs with skip connections would be promising in practice.

An effective and efficient architecture performance evaluation scheme is essential for the success of Neural Architecture Search (NAS). To save computational cost, most of existing NAS algorithms often train and evaluate intermediate neural architectures on a small proxy dataset with limited training epochs. But it is difficult to expect an accurate performance estimation of an architecture in such a coarse evaluation way. This paper advocates a new neural architecture evaluation scheme, which aims to determine which architecture would perform better instead of accurately predict the absolute architecture performance. Therefore, we propose a \textbf{relativistic} architecture performance predictor in NAS (ReNAS). We encode neural architectures into feature tensors, and further refining the representations with the predictor. The proposed relativistic performance predictor can be deployed in discrete searching methods to search for the desired architectures without additional evaluation. Experimental results on NAS-Bench-101 dataset suggests that, sampling 424 ($0.1\%$ of the entire search space) neural architectures and their corresponding validation performance is already enough for learning an accurate architecture performance predictor. The accuracies of our searched neural architectures on NAS-Bench-101 and NAS-Bench-201 datasets are higher than that of the state-of-the-art methods and show the priority of the proposed method.

北京阿比特科技有限公司