亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper presents the methodology and data used for the automatic extraction of the Romanian Academic Word List (Ro-AWL). Academic Word Lists are useful in both L2 and L1 teaching contexts. For the Romanian language, no such resource exists so far. Ro-AWL has been generated by combining methods from corpus and computational linguistics with L2 academic writing approaches. We use two types of data: (a) existing data, such as the Romanian Frequency List based on the ROMBAC corpus, and (b) self-compiled data, such as the expert academic writing corpus EXPRES. For constructing the academic word list, we follow the methodology for building the Academic Vocabulary List for the English language. The distribution of Ro-AWL features (general distribution, POS distribution) into four disciplinary datasets is in line with previous research. Ro-AWL is freely available and can be used for teaching, research and NLP applications.

相關內容

計算(suan)語言學(xue)(xue)(Computational Linguistics)是歷史(shi)最悠久的(de)(de)(de)(de)出版物,專門研(yan)究語言的(de)(de)(de)(de)計算(suan)和(he)數學(xue)(xue)特(te)性以及自然語言處理系統(tong)的(de)(de)(de)(de)設計和(he)分析。這本備受推崇的(de)(de)(de)(de)季刊(kan)為(wei)大學(xue)(xue)和(he)工(gong)業界的(de)(de)(de)(de)語言學(xue)(xue)家(jia)、計算(suan)語言學(xue)(xue)家(jia)、人工(gong)智能和(he)機(ji)器學(xue)(xue)習研(yan)究者、認知科(ke)學(xue)(xue)家(jia)、語言專家(jia)和(he)哲學(xue)(xue)家(jia)提供有關(guan)語言研(yan)究各個方(fang)面(mian)的(de)(de)(de)(de)計算(suan)方(fang)面(mian)的(de)(de)(de)(de)最新信息。 官網(wang)地(di)址:

Initialization of neural network weights plays a pivotal role in determining their performance. Feature Imitating Networks (FINs) offer a novel strategy by initializing weights to approximate specific closed-form statistical features, setting a promising foundation for deep learning architectures. While the applicability of FINs has been chiefly tested in biomedical domains, this study extends its exploration into other time series datasets. Three different experiments are conducted in this study to test the applicability of imitating Tsallis entropy for performance enhancement: Bitcoin price prediction, speech emotion recognition, and chronic neck pain detection. For the Bitcoin price prediction, models embedded with FINs reduced the root mean square error by around 1000 compared to the baseline. In the speech emotion recognition task, the FIN-augmented model increased classification accuracy by over 3 percent. Lastly, in the CNP detection experiment, an improvement of about 7 percent was observed compared to established classifiers. These findings validate the broad utility and potency of FINs in diverse applications.

This work investigates a case study of using physical-based sonification of Quadratic Unconstrained Binary Optimization (QUBO) problems, optimized by the Variational Quantum Eigensolver (VQE) algorithm. The VQE approximates the solution of the problem by using an iterative loop between the quantum computer and a classical optimization routine. This work explores the intermediary statevectors found in each VQE iteration as the means of sonifying the optimization process itself. The implementation was realised in the form of a musical interface prototype named Variational Quantum Harmonizer (VQH), providing potential design strategies for musical applications, focusing on chords, chord progressions, and arpeggios. The VQH can be used both to enhance data visualization or to create artistic pieces. The methodology is also relevant in terms of how an artist would gain intuition towards achieving a desired musical sound by carefully designing QUBO cost functions. Flexible mapping strategies could supply a broad portfolio of sounds for QUBO and quantum-inspired musical compositions, as demonstrated in a case study composition, "Dependent Origination" by Peter Thomas and Paulo Itaborai.

This study investigates how to schedule nanosatellite tasks more efficiently using Graph Neural Networks (GNNs). In the Offline Nanosatellite Task Scheduling (ONTS) problem, the goal is to find the optimal schedule for tasks to be carried out in orbit while taking into account Quality-of-Service (QoS) considerations such as priority, minimum and maximum activation events, execution time-frames, periods, and execution windows, as well as constraints on the satellite's power resources and the complexity of energy harvesting and management. The ONTS problem has been approached using conventional mathematical formulations and exact methods, but their applicability to challenging cases of the problem is limited. This study examines the use of GNNs in this context, which has been effectively applied to optimization problems such as the traveling salesman, scheduling, and facility placement problems. More specifically, we investigate whether GNNs can learn the complex structure of the ONTS problem with respect to feasibility and optimality of candidate solutions. Furthermore, we evaluate using GNN-based heuristic solutions to provide better solutions (w.r.t. the objective value) to the ONTS problem and reduce the optimization cost. Our experiments show that GNNs are not only able to learn feasibility and optimality for instances of the ONTS problem, but they can generalize to harder instances than those seen during training. Furthermore, the GNN-based heuristics improved the expected objective value of the best solution found under the time limit in 45%, and reduced the expected time to find a feasible solution in 35%, when compared to the SCIP (Solving Constraint Integer Programs) solver in its off-the-shelf configuration

This paper presents a novel Stochastic Optimal Control (SOC) method based on Model Predictive Path Integral control (MPPI), named Stein Variational Guided MPPI (SVG-MPPI), designed to handle rapidly shifting multimodal optimal action distributions. While MPPI can find a Gaussian-approximated optimal action distribution in closed form, i.e., without iterative solution updates, it struggles with multimodality of the optimal distributions, such as those involving non-convex constraints for obstacle avoidance. This is due to the less representative nature of the Gaussian. To overcome this limitation, our method aims to identify a target mode of the optimal distribution and guide the solution to converge to fit it. In the proposed method, the target mode is roughly estimated using a modified Stein Variational Gradient Descent (SVGD) method and embedded into the MPPI algorithm to find a closed-form "mode-seeking" solution that covers only the target mode, thus preserving the fast convergence property of MPPI. Our simulation and real-world experimental results demonstrate that SVG-MPPI outperforms both the original MPPI and other state-of-the-art sampling-based SOC algorithms in terms of path-tracking and obstacle-avoidance capabilities. Source code: //github.com/kohonda/proj-svg_mppi

Natural Language Explanations (NLE) aim at supplementing the prediction of a model with human-friendly natural text. Existing NLE approaches involve training separate models for each downstream task. In this work, we propose Uni-NLX, a unified framework that consolidates all NLE tasks into a single and compact multi-task model using a unified training objective of text generation. Additionally, we introduce two new NLE datasets: 1) ImageNetX, a dataset of 144K samples for explaining ImageNet categories, and 2) VQA-ParaX, a dataset of 123K samples for explaining the task of Visual Question Answering (VQA). Both datasets are derived leveraging large language models (LLMs). By training on the 1M combined NLE samples, our single unified framework is capable of simultaneously performing seven NLE tasks including VQA, visual recognition and visual reasoning tasks with 7X fewer parameters, demonstrating comparable performance to the independent task-specific models in previous approaches, and in certain tasks even outperforming them. Code is at //github.com/fawazsammani/uni-nlx

We propose the NFLikelihood, an unsupervised version, based on Normalizing Flows, of the DNNLikelihood proposed in Ref.[1]. We show, through realistic examples, how Autoregressive Flows, based on affine and rational quadratic spline bijectors, are able to learn complicated high-dimensional Likelihoods arising in High Energy Physics (HEP) analyses. We focus on a toy LHC analysis example already considered in the literature and on two Effective Field Theory fits of flavor and electroweak observables, whose samples have been obtained throught the HEPFit code. We discuss advantages and disadvantages of the unsupervised approach with respect to the supervised one and discuss possible interplays of the two.

This paper discusses challenges and opportunities of considering the Metaverse as an Information-Centric Network (ICN). The Web today essentially represents a data-centric application layer: data named by URLs is manipulated with REST primitives. However, the semantic gap with the underlying host-oriented transport is significant, typically leading to complexity, centralization, and brittleness. Popular interest in "the Metaverse" suggests that the end-user experience of the Web will evolve towards always-on eXtended Reality (XR). With the benefit of a historical perspective, computing advances, and decades of experience with a global network, there is an opportunity to holistically consider the Metaverse not as an application of the current network, but an evolution of the network itself, reducing rather than widening the gap between network architecture and application semantics. An ICN architecture offers the possibility to achieve this with less overhead, low latency, better security, and more disruption tolerance suitable to diverse uses cases, even those facing intermittent connectivity.

This work addresses the block-diagonal semidefinite program (SDP) relaxations for the clique number of the Paley graphs. The size of the maximal clique (clique number) of a graph is a classic NP-complete problem; a Paley graph is a deterministic graph where two vertices are connected if their difference is a quadratic residue (square) in a finite field with the number of elements given by certain primes and prime powers. Improving the upper bound for the Paley graph clique number for prime powers that are non-squares is an open problem in combinatorics. Moreover, since quadratic residues exhibit pseudorandom properties, Paley graphs are related to the construction of deterministic restricted isometries, an open problem in compressed sensing. Recent work provides numerical evidence that the current upper bounds can be improved by the sum-of-squares (SOS) relaxations. In particular, the bounds given by the SOS relaxations of degree 4 (SOS-4) have been empirically observed to be growing at an order smaller than square root of the prime. However, computations of SOS-4 appear to be intractable with respect to large graphs. Gvozdenovic et al. introduced a more computationally efficient block-diagonal hierarchy of SDPs and computed the values of these SDPs of degrees 2 (L2) for the Paley graph clique numbers associated with primes p less or equal to 809, which bound from above the corresponding SOS-4 relaxations. We compute the values of the L2 relaxations for p's between 821 and 997. Our results provide some numerical evidence that these relaxations, and therefore also the SOS-4 relaxations, may be scaling at an order smaller than the square root of p. However, due to the size of the SDPs, we have not been able to compute L2 relaxations for p's greater than 997. Therefore, our scaling estimate is not conclusive and presents an interesting open problem for further study.

This paper presents an exhaustive quantitative and qualitative evaluation of Large Language Models (LLMs) for Knowledge Graph (KG) construction and reasoning. We employ eight distinct datasets that encompass aspects including entity, relation and event extraction, link prediction, and question answering. Empirically, our findings suggest that GPT-4 outperforms ChatGPT in the majority of tasks and even surpasses fine-tuned models in certain reasoning and question-answering datasets. Moreover, our investigation extends to the potential generalization ability of LLMs for information extraction, which culminates in the presentation of the Virtual Knowledge Extraction task and the development of the VINE dataset. Drawing on these empirical findings, we further propose AutoKG, a multi-agent-based approach employing LLMs for KG construction and reasoning, which aims to chart the future of this field and offer exciting opportunities for advancement. We anticipate that our research can provide invaluable insights for future undertakings of KG\footnote{Code and datasets will be available in //github.com/zjunlp/AutoKG.

This paper presents a comprehensive and practical guide for practitioners and end-users working with Large Language Models (LLMs) in their downstream natural language processing (NLP) tasks. We provide discussions and insights into the usage of LLMs from the perspectives of models, data, and downstream tasks. Firstly, we offer an introduction and brief summary of current GPT- and BERT-style LLMs. Then, we discuss the influence of pre-training data, training data, and test data. Most importantly, we provide a detailed discussion about the use and non-use cases of large language models for various natural language processing tasks, such as knowledge-intensive tasks, traditional natural language understanding tasks, natural language generation tasks, emergent abilities, and considerations for specific tasks.We present various use cases and non-use cases to illustrate the practical applications and limitations of LLMs in real-world scenarios. We also try to understand the importance of data and the specific challenges associated with each NLP task. Furthermore, we explore the impact of spurious biases on LLMs and delve into other essential considerations, such as efficiency, cost, and latency, to ensure a comprehensive understanding of deploying LLMs in practice. This comprehensive guide aims to provide researchers and practitioners with valuable insights and best practices for working with LLMs, thereby enabling the successful implementation of these models in a wide range of NLP tasks. A curated list of practical guide resources of LLMs, regularly updated, can be found at \url{//github.com/Mooler0410/LLMsPracticalGuide}.

北京阿比特科技有限公司