We obtain new equitightness and $C([0,T];L^p(\mathbb{R}^N))$-convergence results for numerical approximations of generalized porous medium equations of the form $$ \partial_tu-\mathfrak{L}[\varphi(u)]=g\qquad\text{in $\mathbb{R}^N\times(0,T)$}, $$ where $\varphi:\mathbb{R}\to\mathbb{R}$ is continuous and nondecreasing, and $\mathfrak{L}$ is a local or nonlocal diffusion operator. Our results include slow diffusions, strongly degenerate Stefan problems, and fast diffusions above a critical exponent. These results improve the previous $C([0,T];L_{\text{loc}}^p(\mathbb{R}^N))$-convergence obtained in a series of papers on the topic by the authors. To have equitightness and global $L^p$-convergence, some additional restrictions on $\mathfrak{L}$ and $\varphi$ are needed. Most commonly used symmetric operators $\mathfrak{L}$ are still included: the Laplacian, fractional Laplacians, and other generators of symmetric L\'evy processes with some fractional moment. We also discuss extensions to nonlinear possibly strongly degenerate convection-diffusion equations.
Mixed-dimensional elliptic equations exhibiting a hierarchical structure are commonly used to model problems with high aspect ratio inclusions, such as flow in fractured porous media. We derive general abstract estimates based on the theory of functional a posteriori error estimates, for which guaranteed upper bounds for the primal and dual variables and two-sided bounds for the primal-dual pair are obtained. We improve on the abstract results obtained with the functional approach by proposing four different ways of estimating the residual errors based on the extent the approximate solution has conservation properties, i.e.: (1) no conservation, (2) subdomain conservation, (3) grid-level conservation, and (4) exact conservation. This treatment results in sharper and fully computable estimates when mass is conserved either at the grid level or exactly, with a comparable structure to those obtained from grid-based a posteriori techniques. We demonstrate the practical effectiveness of our theoretical results through numerical experiments using four different discretization methods for synthetic problems and applications based on benchmarks of flow in fractured porous media.
Stochastic evolution equations with compensated Poisson noise are considered in the variational approach with monotone and coercive coefficients. Here the Poisson noise is assumed to be time-homogeneous with $\sigma$-finite intensity measure on a metric space. By using finite element methods and Galerkin approximations, some explicit and implicit discretizations for this equation are presented and their convergence is proved. Polynomial growth condition and linear growth condition are assumed on the drift operator, respectively for the implicit and explicit schemes.
Covariance estimation for matrix-valued data has received an increasing interest in applications. Unlike previous works that rely heavily on matrix normal distribution assumption and the requirement of fixed matrix size, we propose a class of distribution-free regularized covariance estimation methods for high-dimensional matrix data under a separability condition and a bandable covariance structure. Under these conditions, the original covariance matrix is decomposed into a Kronecker product of two bandable small covariance matrices representing the variability over row and column directions. We formulate a unified framework for estimating bandable covariance, and introduce an efficient algorithm based on rank one unconstrained Kronecker product approximation. The convergence rates of the proposed estimators are established, and the derived minimax lower bound shows our proposed estimator is rate-optimal under certain divergence regimes of matrix size. We further introduce a class of robust covariance estimators and provide theoretical guarantees to deal with heavy-tailed data. We demonstrate the superior finite-sample performance of our methods using simulations and real applications from a gridded temperature anomalies dataset and a S&P 500 stock data analysis.
This paper makes the first attempt to apply newly developed upwind GFDM for the meshless solution of two-phase porous flow equations. In the presented method, node cloud is used to flexibly discretize the computational domain, instead of complicated mesh generation. Combining with moving least square approximation and local Taylor expansion, spatial derivatives of oil-phase pressure at a node are approximated by generalized difference operators in the local influence domain of the node. By introducing the first-order upwind scheme of phase relative permeability, and combining the discrete boundary conditions, fully-implicit GFDM-based nonlinear discrete equations of the immiscible two-phase porous flow are obtained and solved by the nonlinear solver based on the Newton iteration method with the automatic differentiation, to avoid the additional computational cost and possible computational instability caused by sequentially coupled scheme. Two numerical examples are implemented to test the computational performances of the presented method. Detailed error analysis finds the two sources of the calculation error, roughly studies the convergence order thus find that the low-order error of GFDM makes the convergence order of GFDM lower than that of FDM when node spacing is small, and points out the significant effect of the symmetry or uniformity of the node collocation in the node influence domain on the accuracy of generalized difference operators, and the radius of the node influence domain should be small to achieve high calculation accuracy, which is a significant difference between the studied hyperbolic two-phase porous flow problem and the elliptic problems when GFDM is applied.
Multigrid is a powerful solver for large-scale linear systems arising from discretized partial differential equations. The convergence theory of multigrid methods for symmetric positive definite problems has been well developed over the past decades, while, for nonsymmetric problems, such theory is still not mature. As a foundation for multigrid analysis, two-grid convergence theory plays an important role in motivating multigrid algorithms. Regarding two-grid methods for nonsymmetric problems, most previous works focus on the spectral radius of iteration matrix or rely on convergence measures that are typically difficult to compute in practice. Moreover, the existing results are confined to two-grid methods with exact solution of the coarse-grid system. In this paper, we analyze the convergence of a two-grid method for nonsymmetric positive definite problems (e.g., linear systems arising from the discretizations of convection-diffusion equations). In the case of exact coarse solver, we establish an elegant identity for characterizing two-grid convergence factor, which is measured by a smoother-induced norm. The identity can be conveniently used to derive a class of optimal restriction operators and analyze how the convergence factor is influenced by restriction. More generally, we present some convergence estimates for an inexact variant of the two-grid method, in which both linear and nonlinear coarse solvers are considered.
In the storied Colonel Blotto game, two colonels allocate $a$ and $b$ troops, respectively, to $k$ distinct battlefields. A colonel wins a battle if they assign more troops to that particular battle, and each colonel seeks to maximize their total number of victories. Despite the problem's formulation in 1921, the first polynomial-time algorithm to compute Nash equilibrium (NE) strategies for this game was discovered only quite recently. In 2016, \citep{ahmadinejad_dehghani_hajiaghayi_lucier_mahini_seddighin_2019} formulated a breakthrough algorithm to compute NE strategies for the Colonel Blotto game\footnote{To the best of our knowledge, the algorithm from \citep{ahmadinejad_dehghani_hajiaghayi_lucier_mahini_seddighin_2019} has computational complexity $O(k^{14}\max\{a,b\}^{13})$}, receiving substantial media coverage (e.g. \citep{Insider}, \citep{NSF}, \citep{ScienceDaily}). In this work, we present the first known $\epsilon$-approximation algorithm to compute NE strategies in the two-player Colonel Blotto game in runtime $\widetilde{O}(\epsilon^{-4} k^8 \max\{a,b\}^2)$ for arbitrary settings of these parameters. Moreover, this algorithm computes approximate coarse correlated equilibrium strategies in the multiplayer (continuous and discrete) Colonel Blotto game (when there are $\ell > 2$ colonels) with runtime $\widetilde{O}(\ell \epsilon^{-4} k^8 n^2 + \ell^2 \epsilon^{-2} k^3 n (n+k))$, where $n$ is the maximum troop count. Before this work, no polynomial-time algorithm was known to compute exact or approximate equilibrium (in any sense) strategies for multiplayer Colonel Blotto with arbitrary parameters. Our algorithm computes these approximate equilibria by a novel (to the author's knowledge) sampling technique with which we implicitly perform multiplicative weights update over the exponentially many strategies available to each player.
Momentum methods, such as heavy ball method~(HB) and Nesterov's accelerated gradient method~(NAG), have been widely used in training neural networks by incorporating the history of gradients into the current updating process. In practice, they often provide improved performance over (stochastic) gradient descent~(GD) with faster convergence. Despite these empirical successes, theoretical understandings of their accelerated convergence rates are still lacking. Recently, some attempts have been made by analyzing the trajectories of gradient-based methods in an over-parameterized regime, where the number of the parameters is significantly larger than the number of the training instances. However, the majority of existing theoretical work is mainly concerned with GD and the established convergence result of NAG is inferior to HB and GD, which fails to explain the practical success of NAG. In this paper, we take a step towards closing this gap by analyzing NAG in training a randomly initialized over-parameterized two-layer fully connected neural network with ReLU activation. Despite the fact that the objective function is non-convex and non-smooth, we show that NAG converges to a global minimum at a non-asymptotic linear rate $(1-\Theta(1/\sqrt{\kappa}))^t$, where $\kappa > 1$ is the condition number of a gram matrix and $t$ is the number of the iterations. Compared to the convergence rate $(1-\Theta(1/{\kappa}))^t$ of GD, our result provides theoretical guarantees for the acceleration of NAG in neural network training. Furthermore, our findings suggest that NAG and HB have similar convergence rate. Finally, we conduct extensive experiments on six benchmark datasets to validate the correctness of our theoretical results.
We introduce a novel methodology for particle filtering in dynamical systems where the evolution of the signal of interest is described by a SDE and observations are collected instantaneously at prescribed time instants. The new approach includes the discretisation of the SDE and the design of efficient particle filters for the resulting discrete-time state-space model. The discretisation scheme converges with weak order 1 and it is devised to create a sequential dependence structure along the coordinates of the discrete-time state vector. We introduce a class of space-sequential particle filters that exploits this structure to improve performance when the system dimension is large. This is numerically illustrated by a set of computer simulations for a stochastic Lorenz 96 system with additive noise. The new space-sequential particle filters attain approximately constant estimation errors as the dimension of the Lorenz 96 system is increased, with a computational cost that increases polynomially, rather than exponentially, with the system dimension. Besides the new numerical scheme and particle filters, we provide in this paper a general framework for discrete-time filtering in continuous-time dynamical systems described by a SDE and instantaneous observations. Provided that the SDE is discretised using a weakly-convergent scheme, we prove that the marginal posterior laws of the resulting discrete-time state-space model converge to the posterior marginal posterior laws of the original continuous-time state-space model under a suitably defined metric. This result is general and not restricted to the numerical scheme or particle filters specifically studied in this manuscript.
The minimum energy path (MEP) describes the mechanism of reaction, and the energy barrier along the path can be used to calculate the reaction rate in thermal systems. The nudged elastic band (NEB) method is one of the most commonly used schemes to compute MEPs numerically. It approximates an MEP by a discrete set of configuration images, where the discretization size determines both computational cost and accuracy of the simulations. In this paper, we consider a discrete MEP to be a stationary state of the NEB method and prove an optimal convergence rate of the discrete MEP with respect to the number of images. Numerical simulations for the transitions of some several proto-typical model systems are performed to support the theory.
The numerical solution of singular eigenvalue problems is complicated by the fact that small perturbations of the coefficients may have an arbitrarily bad effect on eigenvalue accuracy. However, it has been known for a long time that such perturbations are exceptional and standard eigenvalue solvers, such as the QZ algorithm, tend to yield good accuracy despite the inevitable presence of roundoff error. Recently, Lotz and Noferini quantified this phenomenon by introducing the concept of $\delta$-weak eigenvalue condition numbers. In this work, we consider singular quadratic eigenvalue problems and two popular linearizations. Our results show that a correctly chosen linearization increases $\delta$-weak eigenvalue condition numbers only marginally, justifying the use of these linearizations in numerical solvers also in the singular case. We propose a very simple but often effective algorithm for computing well-conditioned eigenvalues of a singular quadratic eigenvalue problems by adding small random perturbations to the coefficients. We prove that the eigenvalue condition number is, with high probability, a reliable criterion for detecting and excluding spurious eigenvalues created from the singular part.