亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The combination of convolutional and recurrent neural networks is a promising framework that allows the extraction of high-quality spatio-temporal features together with its temporal dependencies, which is key for time series prediction problems such as forecasting, classification or anomaly detection, amongst others. In this paper, the TSFEDL library is introduced. It compiles 20 state-of-the-art methods for both time series feature extraction and prediction, employing convolutional and recurrent deep neural networks for its use in several data mining tasks. The library is built upon a set of Tensorflow+Keras and PyTorch modules under the AGPLv3 license. The performance validation of the architectures included in this proposal confirms the usefulness of this Python package.

相關內容

Unsupervised time series anomaly detection is instrumental in monitoring and alarming potential faults of target systems in various domains. Current state-of-the-art time series anomaly detectors mainly focus on devising advanced neural network structures and new reconstruction/prediction learning objectives to learn data normality (normal patterns and behaviors) as accurately as possible. However, these one-class learning methods can be deceived by unknown anomalies in the training data (i.e., anomaly contamination). Further, their normality learning also lacks knowledge about the anomalies of interest. Consequently, they often learn a biased, inaccurate normality boundary. This paper proposes a novel one-class learning approach, named calibrated one-class classification, to tackle this problem. Our one-class classifier is calibrated in two ways: (1) by adaptively penalizing uncertain predictions, which helps eliminate the impact of anomaly contamination while accentuating the predictions that the one-class model is confident in, and (2) by discriminating the normal samples from native anomaly examples that are generated to simulate genuine time series abnormal behaviors on the basis of original data. These two calibrations result in contamination-tolerant, anomaly-informed one-class learning, yielding a significantly improved normality modeling. Extensive experiments on six real-world datasets show that our model substantially outperforms twelve state-of-the-art competitors and obtains 6% - 31% F1 score improvement. The source code is available at \url{//github.com/xuhongzuo/couta}.

Performance optimization of deep learning models is conducted either manually or through automatic architecture search, or a combination of both. On the other hand, their performance strongly depends on the target hardware and how successfully the models were trained. We propose to use a multi-dimensional Pareto frontier to re-define the efficiency measure of candidate deep learning models, where several variables such as training cost, inference latency, and accuracy play a relative role in defining a dominant model. Furthermore, a random version of the multi-dimensional Pareto frontier is introduced to mitigate the uncertainty of accuracy, latency, and throughput of deep learning models in different experimental setups. These two complementary methods can be combined to perform objective benchmarking of deep learning models. Our proposed method is applied to a wide range of deep image classification models trained on ImageNet data. Our method combines competing variables with stochastic nature in a single relative efficiency measure. This allows ranking deep learning models that run efficiently on different hardware, and combining inference efficiency with training efficiency objectively.

Since the inception of Bitcoin in 2009, the market of cryptocurrencies has grown beyond initial expectations as daily trades exceed $10 billion. As industries become automated, the need for an automated fraud detector becomes very apparent. Detecting anomalies in real time prevents potential accidents and economic losses. Anomaly detection in multivariate time series data poses a particular challenge because it requires simultaneous consideration of temporal dependencies and relationships between variables. Identifying an anomaly in real time is not an easy task specifically because of the exact anomalistic behavior they observe. Some points may present pointwise global or local anomalistic behavior, while others may be anomalistic due to their frequency or seasonal behavior or due to a change in the trend. In this paper we suggested working on real time series of trades of Ethereum from specific accounts and surveyed a large variety of different algorithms traditional and new. We categorized them according to the strategy and the anomalistic behavior which they search and showed that when bundling them together to different groups, they can prove to be a good real-time detector with an alarm time of no longer than a few seconds and with very high confidence.

Fasteners play a critical role in securing various parts of machinery. Deformations such as dents, cracks, and scratches on the surface of fasteners are caused by material properties and incorrect handling of equipment during production processes. As a result, quality control is required to ensure safe and reliable operations. The existing defect inspection method relies on manual examination, which consumes a significant amount of time, money, and other resources; also, accuracy cannot be guaranteed due to human error. Automatic defect detection systems have proven impactful over the manual inspection technique for defect analysis. However, computational techniques such as convolutional neural networks (CNN) and deep learning-based approaches are evolutionary methods. By carefully selecting the design parameter values, the full potential of CNN can be realised. Using Taguchi-based design of experiments and analysis, an attempt has been made to develop a robust automatic system in this study. The dataset used to train the system has been created manually for M14 size nuts having two labeled classes: Defective and Non-defective. There are a total of 264 images in the dataset. The proposed sequential CNN comes up with a 96.3% validation accuracy, 0.277 validation loss at 0.001 learning rate.

Video Anomaly Detection (VAD) is an important topic in computer vision. Motivated by the recent advances in self-supervised learning, this paper addresses VAD by solving an intuitive yet challenging pretext task, i.e., spatio-temporal jigsaw puzzles, which is cast as a multi-label fine-grained classification problem. Our method exhibits several advantages over existing works: 1) the spatio-temporal jigsaw puzzles are decoupled in terms of spatial and temporal dimensions, responsible for capturing highly discriminative appearance and motion features, respectively; 2) full permutations are used to provide abundant jigsaw puzzles covering various difficulty levels, allowing the network to distinguish subtle spatio-temporal differences between normal and abnormal events; and 3) the pretext task is tackled in an end-to-end manner without relying on any pre-trained models. Our method outperforms state-of-the-art counterparts on three public benchmarks. Especially on ShanghaiTech Campus, the result is superior to reconstruction and prediction-based methods by a large margin.

As the central nerve of the intelligent vehicle control system, the in-vehicle network bus is crucial to the security of vehicle driving. One of the best standards for the in-vehicle network is the Controller Area Network (CAN bus) protocol. However, the CAN bus is designed to be vulnerable to various attacks due to its lack of security mechanisms. To enhance the security of in-vehicle networks and promote the research in this area, based upon a large scale of CAN network traffic data with the extracted valuable features, this study comprehensively compared fully-supervised machine learning with semi-supervised machine learning methods for CAN message anomaly detection. Both traditional machine learning models (including single classifier and ensemble models) and neural network based deep learning models are evaluated. Furthermore, this study proposed a deep autoencoder based semi-supervised learning method applied for CAN message anomaly detection and verified its superiority over other semi-supervised methods. Extensive experiments show that the fully-supervised methods generally outperform semi-supervised ones as they are using more information as inputs. Typically the developed XGBoost based model obtained state-of-the-art performance with the best accuracy (98.65%), precision (0.9853), and ROC AUC (0.9585) beating other methods reported in the literature.

The accurate and interpretable prediction of future events in time-series data often requires the capturing of representative patterns (or referred to as states) underpinning the observed data. To this end, most existing studies focus on the representation and recognition of states, but ignore the changing transitional relations among them. In this paper, we present evolutionary state graph, a dynamic graph structure designed to systematically represent the evolving relations (edges) among states (nodes) along time. We conduct analysis on the dynamic graphs constructed from the time-series data and show that changes on the graph structures (e.g., edges connecting certain state nodes) can inform the occurrences of events (i.e., time-series fluctuation). Inspired by this, we propose a novel graph neural network model, Evolutionary State Graph Network (EvoNet), to encode the evolutionary state graph for accurate and interpretable time-series event prediction. Specifically, Evolutionary State Graph Network models both the node-level (state-to-state) and graph-level (segment-to-segment) propagation, and captures the node-graph (state-to-segment) interactions over time. Experimental results based on five real-world datasets show that our approach not only achieves clear improvements compared with 11 baselines, but also provides more insights towards explaining the results of event predictions.

Modeling multivariate time series has long been a subject that has attracted researchers from a diverse range of fields including economics, finance, and traffic. A basic assumption behind multivariate time series forecasting is that its variables depend on one another but, upon looking closely, it is fair to say that existing methods fail to fully exploit latent spatial dependencies between pairs of variables. In recent years, meanwhile, graph neural networks (GNNs) have shown high capability in handling relational dependencies. GNNs require well-defined graph structures for information propagation which means they cannot be applied directly for multivariate time series where the dependencies are not known in advance. In this paper, we propose a general graph neural network framework designed specifically for multivariate time series data. Our approach automatically extracts the uni-directed relations among variables through a graph learning module, into which external knowledge like variable attributes can be easily integrated. A novel mix-hop propagation layer and a dilated inception layer are further proposed to capture the spatial and temporal dependencies within the time series. The graph learning, graph convolution, and temporal convolution modules are jointly learned in an end-to-end framework. Experimental results show that our proposed model outperforms the state-of-the-art baseline methods on 3 of 4 benchmark datasets and achieves on-par performance with other approaches on two traffic datasets which provide extra structural information.

Deep Convolutional Neural Networks (CNNs) are a special type of Neural Networks, which have shown state-of-the-art results on various competitive benchmarks. The powerful learning ability of deep CNN is largely achieved with the use of multiple non-linear feature extraction stages that can automatically learn hierarchical representation from the data. Availability of a large amount of data and improvements in the hardware processing units have accelerated the research in CNNs and recently very interesting deep CNN architectures are reported. The recent race in deep CNN architectures for achieving high performance on the challenging benchmarks has shown that the innovative architectural ideas, as well as parameter optimization, can improve the CNN performance on various vision-related tasks. In this regard, different ideas in the CNN design have been explored such as use of different activation and loss functions, parameter optimization, regularization, and restructuring of processing units. However, the major improvement in representational capacity is achieved by the restructuring of the processing units. Especially, the idea of using a block as a structural unit instead of a layer is gaining substantial appreciation. This survey thus focuses on the intrinsic taxonomy present in the recently reported CNN architectures and consequently, classifies the recent innovations in CNN architectures into seven different categories. These seven categories are based on spatial exploitation, depth, multi-path, width, feature map exploitation, channel boosting and attention. Additionally, it covers the elementary understanding of the CNN components and sheds light on the current challenges and applications of CNNs.

The prevalence of networked sensors and actuators in many real-world systems such as smart buildings, factories, power plants, and data centers generate substantial amounts of multivariate time series data for these systems. The rich sensor data can be continuously monitored for intrusion events through anomaly detection. However, conventional threshold-based anomaly detection methods are inadequate due to the dynamic complexities of these systems, while supervised machine learning methods are unable to exploit the large amounts of data due to the lack of labeled data. On the other hand, current unsupervised machine learning approaches have not fully exploited the spatial-temporal correlation and other dependencies amongst the multiple variables (sensors/actuators) in the system for detecting anomalies. In this work, we propose an unsupervised multivariate anomaly detection method based on Generative Adversarial Networks (GANs). Instead of treating each data stream independently, our proposed MAD-GAN framework considers the entire variable set concurrently to capture the latent interactions amongst the variables. We also fully exploit both the generator and discriminator produced by the GAN, using a novel anomaly score called DR-score to detect anomalies by discrimination and reconstruction. We have tested our proposed MAD-GAN using two recent datasets collected from real-world CPS: the Secure Water Treatment (SWaT) and the Water Distribution (WADI) datasets. Our experimental results showed that the proposed MAD-GAN is effective in reporting anomalies caused by various cyber-intrusions compared in these complex real-world systems.

北京阿比特科技有限公司