亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Generalized singular values (GSVs) play an essential role in the comparative analysis. In the real world data for comparative analysis, both data matrices are usually numerically low-rank. This paper proposes a randomized algorithm to first approximately extract bases and then calculate GSVs efficiently. The accuracy of both basis extration and comparative analysis quantities, angular distances, generalized fractions of the eigenexpression, and generalized normalized Shannon entropy, are rigursly analyzed. The proposed algorithm is applied to both synthetic data sets and the genome-scale expression data sets. Comparing to other GSVs algorithms, the proposed algorithm achieves the fastest runtime while preserving sufficient accuracy in comparative analysis.

相關內容

The logistic regression model is one of the most popular data generation model in noisy binary classification problems. In this work, we study the sample complexity of estimating the parameters of the logistic regression model up to a given $\ell_2$ error, in terms of the dimension and the inverse temperature, with standard normal covariates. The inverse temperature controls the signal-to-noise ratio of the data generation process. While both generalization bounds and asymptotic performance of the maximum-likelihood estimator for logistic regression are well-studied, the non-asymptotic sample complexity that shows the dependence on error and the inverse temperature for parameter estimation is absent from previous analyses. We show that the sample complexity curve has two change-points in terms of the inverse temperature, clearly separating the low, moderate, and high temperature regimes.

Classical logics for strategic reasoning, such as Coalition Logic and Alternating-time Temporal Logic, formalize absolute strategic reasoning about the unconditional strategic abilities of agents to achieve their goals. Goranko and Ju introduced a logic ConStR for strategic reasoning about conditional strategic abilities. However, its completeness is still an open problem. ConStR has three featured operators, and one of them has the following reading: For some action of A that guarantees the achievement of her goal, B has an action to guarantee the achievement of his goal. The logic about this operator is called CConStR. In this paper, we prove completeness for two fragments of CConStR. The key notions of our proof approach include downward validity lemma, grafted models, and upward derivability lemma. The proof approach has good potential to be applied to the completeness of ConStR and other logics.

Multiple imputation (MI) models can be improved by including auxiliary covariates (AC), but their performance in high-dimensional data is not well understood. We aimed to develop and compare high-dimensional MI (HDMI) approaches using structured and natural language processing (NLP)-derived AC in studies with partially observed confounders. We conducted a plasmode simulation study using data from opioid vs. non-steroidal anti-inflammatory drug (NSAID) initiators (X) with observed serum creatinine labs (Z2) and time-to-acute kidney injury as outcome. We simulated 100 cohorts with a null treatment effect, including X, Z2, atrial fibrillation (U), and 13 other investigator-derived confounders (Z1) in the outcome generation. We then imposed missingness (MZ2) on 50% of Z2 measurements as a function of Z2 and U and created different HDMI candidate AC using structured and NLP-derived features. We mimicked scenarios where U was unobserved by omitting it from all AC candidate sets. Using LASSO, we data-adaptively selected HDMI covariates associated with Z2 and MZ2 for MI, and with U to include in propensity score models. The treatment effect was estimated following propensity score matching in MI datasets and we benchmarked HDMI approaches against a baseline imputation and complete case analysis with Z1 only. HDMI using claims data showed the lowest bias (0.072). Combining claims and sentence embeddings led to an improvement in the efficiency displaying the lowest root-mean-squared-error (0.173) and coverage (94%). NLP-derived AC alone did not perform better than baseline MI. HDMI approaches may decrease bias in studies with partially observed confounders where missingness depends on unobserved factors.

We analyze a bilinear optimal control problem for the Stokes--Brinkman equations: the control variable enters the state equations as a coefficient. In two- and three-dimensional Lipschitz domains, we perform a complete continuous analysis that includes the existence of solutions and first- and second-order optimality conditions. We also develop two finite element methods that differ fundamentally in whether the admissible control set is discretized or not. For each of the proposed methods, we perform a convergence analysis and derive a priori error estimates; the latter under the assumption that the domain is convex. Finally, assuming that the domain is Lipschitz, we develop an a posteriori error estimator for each discretization scheme and obtain a global reliability bound.

Quantum hypothesis testing (QHT) has been traditionally studied from the information-theoretic perspective, wherein one is interested in the optimal decay rate of error probabilities as a function of the number of samples of an unknown state. In this paper, we study the sample complexity of QHT, wherein the goal is to determine the minimum number of samples needed to reach a desired error probability. By making use of the wealth of knowledge that already exists in the literature on QHT, we characterize the sample complexity of binary QHT in the symmetric and asymmetric settings, and we provide bounds on the sample complexity of multiple QHT. In more detail, we prove that the sample complexity of symmetric binary QHT depends logarithmically on the inverse error probability and inversely on the negative logarithm of the fidelity. As a counterpart of the quantum Stein's lemma, we also find that the sample complexity of asymmetric binary QHT depends logarithmically on the inverse type II error probability and inversely on the quantum relative entropy, provided that the type II error probability is sufficiently small. We then provide lower and upper bounds on the sample complexity of multiple QHT, with it remaining an intriguing open question to improve these bounds. The final part of our paper outlines and reviews how sample complexity of QHT is relevant to a broad swathe of research areas and can enhance understanding of many fundamental concepts, including quantum algorithms for simulation and search, quantum learning and classification, and foundations of quantum mechanics. As such, we view our paper as an invitation to researchers coming from different communities to study and contribute to the problem of sample complexity of QHT, and we outline a number of open directions for future research.

Robust optimisation is a well-established framework for optimising functions in the presence of uncertainty. The inherent goal of this problem is to identify a collection of inputs whose outputs are both desirable for the decision maker, whilst also being robust to the underlying uncertainties in the problem. In this work, we study the multi-objective extension of this problem from a computational standpoint. We identify that the majority of all robust multi-objective algorithms rely on two key operations: robustification and scalarisation. Robustification refers to the strategy that is used to marginalise over the uncertainty in the problem. Whilst scalarisation refers to the procedure that is used to encode the relative importance of each objective. As these operations are not necessarily commutative, the order that they are performed in has an impact on the resulting solutions that are identified and the final decisions that are made. This work aims to give an exposition on the philosophical differences between these two operations and highlight when one should opt for one ordering over the other. As part of our analysis, we showcase how many existing risk concepts can be easily integrated into the specification and solution of a robust multi-objective optimisation problem. Besides this, we also demonstrate how one can principally define the notion of a robust Pareto front and a robust performance metric based on our robustify and scalarise methodology. To illustrate the efficacy of these new ideas, we present two insightful numerical case studies which are based on real-world data sets.

Maximal regularity is a kind of a priori estimates for parabolic-type equations and it plays an important role in the theory of nonlinear differential equations. The aim of this paper is to investigate the temporally discrete counterpart of maximal regularity for the discontinuous Galerkin (DG) time-stepping method. We will establish such an estimate without logarithmic factor over a quasi-uniform temporal mesh. To show the main result, we introduce the temporally regularized Green's function and then reduce the discrete maximal regularity to a weighted error estimate for its DG approximation. Our results would be useful for investigation of DG approximation of nonlinear parabolic problems.

We consider covariance parameter estimation for Gaussian processes with functional inputs. From an increasing-domain asymptotics perspective, we prove the asymptotic consistency and normality of the maximum likelihood estimator. We extend these theoretical guarantees to encompass scenarios accounting for approximation errors in the inputs, which allows robustness of practical implementations relying on conventional sampling methods or projections onto a functional basis. Loosely speaking, both consistency and normality hold when the approximation error becomes negligible, a condition that is often achieved as the number of samples or basis functions becomes large. These later asymptotic properties are illustrated through analytical examples, including one that covers the case of non-randomly perturbed grids, as well as several numerical illustrations.

Models of complex technological systems inherently contain interactions and dependencies among their input variables that affect their joint influence on the output. Such models are often computationally expensive and few sensitivity analysis methods can effectively process such complexities. Moreover, the sensitivity analysis field as a whole pays limited attention to the nature of interaction effects, whose understanding can prove to be critical for the design of safe and reliable systems. In this paper, we introduce and extensively test a simple binning approach for computing sensitivity indices and demonstrate how complementing it with the smart visualization method, simulation decomposition (SimDec), can permit important insights into the behavior of complex engineering models. The simple binning approach computes first-, second-order effects, and a combined sensitivity index, and is considerably more computationally efficient than the mainstream measure for Sobol indices introduced by Saltelli et al. The totality of the sensitivity analysis framework provides an efficient and intuitive way to analyze the behavior of complex systems containing interactions and dependencies.

Variable-exponent fractional models attract increasing attentions in various applications, while the rigorous analysis is far from well developed. This work provides general tools to address these models. Specifically, we first develop a convolution method to study the well-posedness, regularity, an inverse problem and numerical approximation for the sundiffusion of variable exponent. For models such as the variable-exponent two-sided space-fractional boundary value problem (including the variable-exponent fractional Laplacian equation as a special case) and the distributed variable-exponent model, for which the convolution method does not apply, we develop a perturbation method to prove their well-posedness. The relation between the convolution method and the perturbation method is discussed, and we further apply the latter to prove the well-posedness of the variable-exponent Abel integral equation and discuss the constraint on the data under different initial values of variable exponent.

北京阿比特科技有限公司