亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We analyze a bilinear optimal control problem for the Stokes--Brinkman equations: the control variable enters the state equations as a coefficient. In two- and three-dimensional Lipschitz domains, we perform a complete continuous analysis that includes the existence of solutions and first- and second-order optimality conditions. We also develop two finite element methods that differ fundamentally in whether the admissible control set is discretized or not. For each of the proposed methods, we perform a convergence analysis and derive a priori error estimates; the latter under the assumption that the domain is convex. Finally, assuming that the domain is Lipschitz, we develop an a posteriori error estimator for each discretization scheme and obtain a global reliability bound.

相關內容

The present work concerns the derivation of a numerical scheme to approximate weak solutions of the Euler equations with a gravitational source term. The designed scheme is proved to be fully well-balanced since it is able to exactly preserve all moving equilibrium solutions, as well as the corresponding steady solutions at rest obtained when the velocity vanishes. Moreover, the proposed scheme is entropy-preserving since it satisfies all fully discrete entropy inequalities. In addition, in order to satisfy the required admissibility of the approximate solutions, the positivity of both approximate density and pressure is established. Several numerical experiments attest the relevance of the developed numerical method.

We consider weak convergence of one-step schemes for solving stochastic differential equations (SDEs) with one-sided Lipschitz conditions. It is known that the super-linear coefficients may lead to a blowup of moments of solutions and their numerical solutions. When solutions to SDEs have all finite moments, weak convergence of numerical schemes has been investigated in [Wang et al (2023), Weak error analysis for strong approximation schemes of SDEs with super-linear coefficients, IMA Journal numerical analysis]. Some modified Euler schemes have been analyzed for weak convergence. In this work, we present a family of explicit schemes of first and second-order weak convergence based on classical schemes for SDEs. We explore the effects of limited moments on these schemes. We provide a systematic but simple way to establish weak convergence orders for schemes based on approximations/modifications of drift and diffusion coefficients. We present several numerical examples of these schemes and show their weak convergence orders.

Learning unknown stochastic differential equations (SDEs) from observed data is a significant and challenging task with applications in various fields. Current approaches often use neural networks to represent drift and diffusion functions, and construct likelihood-based loss by approximating the transition density to train these networks. However, these methods often rely on one-step stochastic numerical schemes, necessitating data with sufficiently high time resolution. In this paper, we introduce novel approximations to the transition density of the parameterized SDE: a Gaussian density approximation inspired by the random perturbation theory of dynamical systems, and its extension, the dynamical Gaussian mixture approximation (DynGMA). Benefiting from the robust density approximation, our method exhibits superior accuracy compared to baseline methods in learning the fully unknown drift and diffusion functions and computing the invariant distribution from trajectory data. And it is capable of handling trajectory data with low time resolution and variable, even uncontrollable, time step sizes, such as data generated from Gillespie's stochastic simulations. We then conduct several experiments across various scenarios to verify the advantages and robustness of the proposed method.

Matrix evolution equations occur in many applications, such as dynamical Lyapunov/Sylvester systems or Riccati equations in optimization and stochastic control, machine learning or data assimilation. In many cases, their tightest stability condition is coming from a linear term. Exponential time differencing (ETD) is known to produce highly stable numerical schemes by treating the linear term in an exact fashion. In particular, for stiff problems, ETD methods are a method of choice. We propose an extension of the class of ETD algorithms to matrix-valued dynamical equations. This allows us to produce highly efficient and stable integration schemes. We show their efficiency and applicability for a variety of real-world problems, from geophysical applications to dynamical problems in machine learning.

Complex conjugate matrix equations (CCME) have aroused the interest of many researchers because of computations and antilinear systems. Existing research is dominated by its time-invariant solving methods, but lacks proposed theories for solving its time-variant version. Moreover, artificial neural networks are rarely studied for solving CCME. In this paper, starting with the earliest CCME, zeroing neural dynamics (ZND) is applied to solve its time-variant version. Firstly, the vectorization and Kronecker product in the complex field are defined uniformly. Secondly, Con-CZND1 model and Con-CZND2 model are proposed and theoretically prove convergence and effectiveness. Thirdly, three numerical experiments are designed to illustrate the effectiveness of the two models, compare their differences, highlight the significance of neural dynamics in the complex field, and refine the theory related to ZND.

A new type of systematic approach to study the incompressible Euler equations numerically via the vanishing viscosity limit is proposed in this work. We show the new strategy is unconditionally stable that the $L^2$-energy dissipates and $H^s$-norm is uniformly bounded in time without any restriction on the time step. Moreover, first-order convergence of the proposed method is established including both low regularity and high regularity error estimates. The proposed method is extended to full discretization with a newly developed iterative Fourier spectral scheme. Another main contributions of this work is to propose a new integration by parts technique to lower the regularity requirement from $H^4$ to $H^3$ in order to perform the $L^2$-error estimate. To our best knowledge, this is one of the very first work to study incompressible Euler equations by designing stable numerical schemes via the inviscid limit with rigorous analysis. Furthermore, we will present both low and high regularity errors from numerical experiments and demonstrate the dynamics in several benchmark examples.

Two numerical schemes are proposed and investigated for the Yang--Mills equations, which can be seen as a nonlinear generalisation of the Maxwell equations set on Lie algebra-valued functions, with similarities to certain formulations of General Relativity. Both schemes are built on the Discrete de Rham (DDR) method, and inherit from its main features: an arbitrary order of accuracy, and applicability to generic polyhedral meshes. They make use of the complex property of the DDR, together with a Lagrange-multiplier approach, to preserve, at the discrete level, a nonlinear constraint associated with the Yang--Mills equations. We also show that the schemes satisfy a discrete energy dissipation (the dissipation coming solely from the implicit time stepping). Issues around the practical implementations of the schemes are discussed; in particular, the assembly of the local contributions in a way that minimises the price we pay in dealing with nonlinear terms, in conjunction with the tensorisation coming from the Lie algebra. Numerical tests are provided using a manufactured solution, and show that both schemes display a convergence in $L^2$-norm of the potential and electrical fields in $\mathcal O(h^{k+1})$ (provided that the time step is of that order), where $k$ is the polynomial degree chosen for the DDR complex. We also numerically demonstrate the preservation of the constraint.

We present a new, monolithic first--order (both in time and space) BSSNOK formulation of the coupled Einstein--Euler equations. The entire system of hyperbolic PDEs is solved in a completely unified manner via one single numerical scheme applied to both the conservative sector of the matter part and to the first--order strictly non--conservative sector of the spacetime evolution. The coupling between matter and space-time is achieved via algebraic source terms. The numerical scheme used for the solution of the new monolithic first order formulation is a path-conservative central WENO (CWENO) finite difference scheme, with suitable insertions to account for the presence of the non--conservative terms. By solving several crucial tests of numerical general relativity, including a stable neutron star, Riemann problems in relativistic matter with shock waves and the stable long-time evolution of single and binary puncture black holes up and beyond the binary merger, we show that our new CWENO scheme, introduced two decades ago for the compressible Euler equations of gas dynamics, can be successfully applied also to numerical general relativity, solving all equations at the same time with one single numerical method. In the future the new monolithic approach proposed in this paper may become an attractive alternative to traditional methods that couple central finite difference schemes with Kreiss-Oliger dissipation for the space-time part with totally different TVD schemes for the matter evolution and which are currently the state of the art in the field.

We propose a new parallel-in-time algorithm for solving optimal control problems constrained bypartial differential equations. Our approach, which is based on a deeper understanding of ParaExp,considers an overlapping time-domain decomposition in which we combine the solution of homogeneous problems using exponential propagation with the local solutions of inhomogeneous problems.The algorithm yields a linear system whose matrix-vector product can be fully performed in parallel.We then propose a preconditioner to speed up the convergence of GMRES in the special cases ofthe heat and wave equations. Numerical experiments are provided to illustrate the efficiency of ourpreconditioners.

This paper studies the convergence of a spatial semidiscretization of a three-dimensional stochastic Allen-Cahn equation with multiplicative noise. For non-smooth initial data, the regularity of the mild solution is investigated, and an error estimate is derived within the spatial (L^2)-norm setting. In the case of smooth initial data, two error estimates are established within the framework of general spatial (L^q)-norms.

北京阿比特科技有限公司